Spaces:
Runtime error
Runtime error
encounter1997
commited on
Commit
β’
8d14048
1
Parent(s):
c73a506
add gradio
Browse files- .gitignore +175 -0
- app_gradio.py +66 -0
- configs/black-swan.yaml +36 -0
- configs/brown-bear.yaml +37 -0
- configs/car-moving.yaml +37 -0
- configs/car-turn.yaml +39 -0
- configs/child-riding.yaml +40 -0
- configs/cow-walking.yaml +37 -0
- configs/dog-walking.yaml +35 -0
- configs/horse-running.yaml +36 -0
- configs/lion-roaring.yaml +37 -0
- configs/man-running.yaml +37 -0
- configs/man-surfing.yaml +36 -0
- configs/rabbit-watermelon.yaml +40 -0
- configs/skateboard-dog.yaml +35 -0
- configs/skateboard-man.yaml +35 -0
- gradio_demo/app_running.py +178 -0
- gradio_demo/runner.py +133 -0
- gradio_demo/style.css +3 -0
- requirements.txt +13 -0
- test_vid2vid_zero.py +266 -0
- vid2vid_zero/data/dataset.py +44 -0
- vid2vid_zero/models/attention_2d.py +434 -0
- vid2vid_zero/models/resnet_2d.py +209 -0
- vid2vid_zero/models/unet_2d_blocks.py +609 -0
- vid2vid_zero/models/unet_2d_condition.py +712 -0
- vid2vid_zero/p2p/null_text_w_ptp.py +504 -0
- vid2vid_zero/p2p/p2p_stable.py +242 -0
- vid2vid_zero/p2p/ptp_utils.py +347 -0
- vid2vid_zero/p2p/seq_aligner.py +197 -0
- vid2vid_zero/pipelines/pipeline_vid2vid_zero.py +541 -0
- vid2vid_zero/util.py +114 -0
.gitignore
ADDED
@@ -0,0 +1,175 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# custom dirs
|
2 |
+
checkpoints/
|
3 |
+
outputs/
|
4 |
+
|
5 |
+
# Initially taken from Github's Python gitignore file
|
6 |
+
|
7 |
+
# Byte-compiled / optimized / DLL files
|
8 |
+
__pycache__/
|
9 |
+
*.py[cod]
|
10 |
+
*$py.class
|
11 |
+
|
12 |
+
# C extensions
|
13 |
+
*.so
|
14 |
+
|
15 |
+
# tests and logs
|
16 |
+
tests/fixtures/cached_*_text.txt
|
17 |
+
logs/
|
18 |
+
lightning_logs/
|
19 |
+
lang_code_data/
|
20 |
+
|
21 |
+
# Distribution / packaging
|
22 |
+
.Python
|
23 |
+
build/
|
24 |
+
develop-eggs/
|
25 |
+
dist/
|
26 |
+
downloads/
|
27 |
+
eggs/
|
28 |
+
.eggs/
|
29 |
+
lib/
|
30 |
+
lib64/
|
31 |
+
parts/
|
32 |
+
sdist/
|
33 |
+
var/
|
34 |
+
wheels/
|
35 |
+
*.egg-info/
|
36 |
+
.installed.cfg
|
37 |
+
*.egg
|
38 |
+
MANIFEST
|
39 |
+
|
40 |
+
# PyInstaller
|
41 |
+
# Usually these files are written by a python script from a template
|
42 |
+
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
43 |
+
*.manifest
|
44 |
+
*.spec
|
45 |
+
|
46 |
+
# Installer logs
|
47 |
+
pip-log.txt
|
48 |
+
pip-delete-this-directory.txt
|
49 |
+
|
50 |
+
# Unit test / coverage reports
|
51 |
+
htmlcov/
|
52 |
+
.tox/
|
53 |
+
.nox/
|
54 |
+
.coverage
|
55 |
+
.coverage.*
|
56 |
+
.cache
|
57 |
+
nosetests.xml
|
58 |
+
coverage.xml
|
59 |
+
*.cover
|
60 |
+
.hypothesis/
|
61 |
+
.pytest_cache/
|
62 |
+
|
63 |
+
# Translations
|
64 |
+
*.mo
|
65 |
+
*.pot
|
66 |
+
|
67 |
+
# Django stuff:
|
68 |
+
*.log
|
69 |
+
local_settings.py
|
70 |
+
db.sqlite3
|
71 |
+
|
72 |
+
# Flask stuff:
|
73 |
+
instance/
|
74 |
+
.webassets-cache
|
75 |
+
|
76 |
+
# Scrapy stuff:
|
77 |
+
.scrapy
|
78 |
+
|
79 |
+
# Sphinx documentation
|
80 |
+
docs/_build/
|
81 |
+
|
82 |
+
# PyBuilder
|
83 |
+
target/
|
84 |
+
|
85 |
+
# Jupyter Notebook
|
86 |
+
.ipynb_checkpoints
|
87 |
+
|
88 |
+
# IPython
|
89 |
+
profile_default/
|
90 |
+
ipython_config.py
|
91 |
+
|
92 |
+
# pyenv
|
93 |
+
.python-version
|
94 |
+
|
95 |
+
# celery beat schedule file
|
96 |
+
celerybeat-schedule
|
97 |
+
|
98 |
+
# SageMath parsed files
|
99 |
+
*.sage.py
|
100 |
+
|
101 |
+
# Environments
|
102 |
+
.env
|
103 |
+
.venv
|
104 |
+
env/
|
105 |
+
venv/
|
106 |
+
ENV/
|
107 |
+
env.bak/
|
108 |
+
venv.bak/
|
109 |
+
|
110 |
+
# Spyder project settings
|
111 |
+
.spyderproject
|
112 |
+
.spyproject
|
113 |
+
|
114 |
+
# Rope project settings
|
115 |
+
.ropeproject
|
116 |
+
|
117 |
+
# mkdocs documentation
|
118 |
+
/site
|
119 |
+
|
120 |
+
# mypy
|
121 |
+
.mypy_cache/
|
122 |
+
.dmypy.json
|
123 |
+
dmypy.json
|
124 |
+
|
125 |
+
# Pyre type checker
|
126 |
+
.pyre/
|
127 |
+
|
128 |
+
# vscode
|
129 |
+
.vs
|
130 |
+
.vscode
|
131 |
+
|
132 |
+
# Pycharm
|
133 |
+
.idea
|
134 |
+
|
135 |
+
# TF code
|
136 |
+
tensorflow_code
|
137 |
+
|
138 |
+
# Models
|
139 |
+
proc_data
|
140 |
+
|
141 |
+
# examples
|
142 |
+
runs
|
143 |
+
/runs_old
|
144 |
+
/wandb
|
145 |
+
/examples/runs
|
146 |
+
/examples/**/*.args
|
147 |
+
/examples/rag/sweep
|
148 |
+
|
149 |
+
# data
|
150 |
+
/data
|
151 |
+
serialization_dir
|
152 |
+
|
153 |
+
# emacs
|
154 |
+
*.*~
|
155 |
+
debug.env
|
156 |
+
|
157 |
+
# vim
|
158 |
+
.*.swp
|
159 |
+
|
160 |
+
#ctags
|
161 |
+
tags
|
162 |
+
|
163 |
+
# pre-commit
|
164 |
+
.pre-commit*
|
165 |
+
|
166 |
+
# .lock
|
167 |
+
*.lock
|
168 |
+
|
169 |
+
# DS_Store (MacOS)
|
170 |
+
.DS_Store
|
171 |
+
# RL pipelines may produce mp4 outputs
|
172 |
+
*.mp4
|
173 |
+
|
174 |
+
# dependencies
|
175 |
+
/transformers
|
app_gradio.py
ADDED
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Most code is from https://huggingface.co/spaces/Tune-A-Video-library/Tune-A-Video-Training-UI
|
2 |
+
|
3 |
+
#!/usr/bin/env python
|
4 |
+
|
5 |
+
from __future__ import annotations
|
6 |
+
|
7 |
+
import os
|
8 |
+
from subprocess import getoutput
|
9 |
+
|
10 |
+
import gradio as gr
|
11 |
+
import torch
|
12 |
+
|
13 |
+
from gradio_demo.app_running import create_demo
|
14 |
+
from gradio_demo.runner import Runner
|
15 |
+
|
16 |
+
TITLE = '# [vid2vid-zero](https://github.com/baaivision/vid2vid-zero)'
|
17 |
+
|
18 |
+
ORIGINAL_SPACE_ID = 'BAAI/vid2vid-zero'
|
19 |
+
SPACE_ID = os.getenv('SPACE_ID', ORIGINAL_SPACE_ID)
|
20 |
+
GPU_DATA = getoutput('nvidia-smi')
|
21 |
+
|
22 |
+
if os.getenv('SYSTEM') == 'spaces' and SPACE_ID != ORIGINAL_SPACE_ID:
|
23 |
+
SETTINGS = f'<a href="https://huggingface.co/spaces/{SPACE_ID}/settings">Settings</a>'
|
24 |
+
else:
|
25 |
+
SETTINGS = 'Settings'
|
26 |
+
|
27 |
+
CUDA_NOT_AVAILABLE_WARNING = f'''## Attention - Running on CPU.
|
28 |
+
<center>
|
29 |
+
You can assign a GPU in the {SETTINGS} tab if you are running this on HF Spaces.
|
30 |
+
You can use "T4 small/medium" to run this demo.
|
31 |
+
</center>
|
32 |
+
'''
|
33 |
+
|
34 |
+
HF_TOKEN_NOT_SPECIFIED_WARNING = f'''The environment variable `HF_TOKEN` is not specified. Feel free to specify your Hugging Face token with write permission if you don't want to manually provide it for every run.
|
35 |
+
<center>
|
36 |
+
You can check and create your Hugging Face tokens <a href="https://huggingface.co/settings/tokens" target="_blank">here</a>.
|
37 |
+
You can specify environment variables in the "Repository secrets" section of the {SETTINGS} tab.
|
38 |
+
</center>
|
39 |
+
'''
|
40 |
+
|
41 |
+
HF_TOKEN = os.getenv('HF_TOKEN')
|
42 |
+
|
43 |
+
|
44 |
+
def show_warning(warning_text: str) -> gr.Blocks:
|
45 |
+
with gr.Blocks() as demo:
|
46 |
+
with gr.Box():
|
47 |
+
gr.Markdown(warning_text)
|
48 |
+
return demo
|
49 |
+
|
50 |
+
|
51 |
+
pipe = None
|
52 |
+
runner = Runner(HF_TOKEN)
|
53 |
+
|
54 |
+
with gr.Blocks(css='gradio_demo/style.css') as demo:
|
55 |
+
if not torch.cuda.is_available():
|
56 |
+
show_warning(CUDA_NOT_AVAILABLE_WARNING)
|
57 |
+
|
58 |
+
gr.Markdown(TITLE)
|
59 |
+
with gr.Tabs():
|
60 |
+
with gr.TabItem('Zero-shot Testing'):
|
61 |
+
create_demo(runner, pipe)
|
62 |
+
|
63 |
+
if not HF_TOKEN:
|
64 |
+
show_warning(HF_TOKEN_NOT_SPECIFIED_WARNING)
|
65 |
+
|
66 |
+
demo.queue(max_size=1).launch(share=True)
|
configs/black-swan.yaml
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
pretrained_model_path: checkpoints/stable-diffusion-v1-4
|
2 |
+
output_dir: outputs/black-swan
|
3 |
+
input_data:
|
4 |
+
video_path: data/black-swan.mp4
|
5 |
+
prompt: a blackswan is swimming on the water
|
6 |
+
n_sample_frames: 8
|
7 |
+
width: 512
|
8 |
+
height: 512
|
9 |
+
sample_start_idx: 0
|
10 |
+
sample_frame_rate: 4
|
11 |
+
validation_data:
|
12 |
+
prompts:
|
13 |
+
- a black swan is swimming on the water, Van Gogh style
|
14 |
+
- a white swan is swimming on the water
|
15 |
+
video_length: 8
|
16 |
+
width: 512
|
17 |
+
height: 512
|
18 |
+
num_inference_steps: 50
|
19 |
+
guidance_scale: 7.5
|
20 |
+
num_inv_steps: 50
|
21 |
+
# args for null-text inv
|
22 |
+
use_null_inv: True
|
23 |
+
null_inner_steps: 1
|
24 |
+
null_base_lr: 1e-2
|
25 |
+
null_uncond_ratio: -0.5
|
26 |
+
null_normal_infer: True
|
27 |
+
|
28 |
+
input_batch_size: 1
|
29 |
+
seed: 33
|
30 |
+
mixed_precision: "no"
|
31 |
+
gradient_checkpointing: True
|
32 |
+
enable_xformers_memory_efficient_attention: True
|
33 |
+
# test-time adaptation
|
34 |
+
use_sc_attn: True
|
35 |
+
use_st_attn: True
|
36 |
+
st_attn_idx: 0
|
configs/brown-bear.yaml
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
pretrained_model_path: checkpoints/stable-diffusion-v1-4
|
2 |
+
output_dir: outputs/brown-bear
|
3 |
+
input_data:
|
4 |
+
video_path: data/brown-bear.mp4
|
5 |
+
prompt: a brown bear is sitting on the ground
|
6 |
+
n_sample_frames: 8
|
7 |
+
width: 512
|
8 |
+
height: 512
|
9 |
+
sample_start_idx: 0
|
10 |
+
sample_frame_rate: 1
|
11 |
+
validation_data:
|
12 |
+
prompts:
|
13 |
+
- a brown bear is sitting on the grass
|
14 |
+
- a black bear is sitting on the grass
|
15 |
+
- a polar bear is sitting on the ground
|
16 |
+
video_length: 8
|
17 |
+
width: 512
|
18 |
+
height: 512
|
19 |
+
num_inference_steps: 50
|
20 |
+
guidance_scale: 7.5
|
21 |
+
num_inv_steps: 50
|
22 |
+
# args for null-text inv
|
23 |
+
use_null_inv: True
|
24 |
+
null_inner_steps: 1
|
25 |
+
null_base_lr: 1e-2
|
26 |
+
null_uncond_ratio: -0.5
|
27 |
+
null_normal_infer: True
|
28 |
+
|
29 |
+
input_batch_size: 1
|
30 |
+
seed: 33
|
31 |
+
mixed_precision: "no"
|
32 |
+
gradient_checkpointing: True
|
33 |
+
enable_xformers_memory_efficient_attention: True
|
34 |
+
# test-time adaptation
|
35 |
+
use_sc_attn: True
|
36 |
+
use_st_attn: True
|
37 |
+
st_attn_idx: 0
|
configs/car-moving.yaml
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
pretrained_model_path: checkpoints/stable-diffusion-v1-4
|
2 |
+
output_dir: outputs/car-moving
|
3 |
+
input_data:
|
4 |
+
video_path: data/car-moving.mp4
|
5 |
+
prompt: a car is moving on the road
|
6 |
+
n_sample_frames: 8
|
7 |
+
width: 512
|
8 |
+
height: 512
|
9 |
+
sample_start_idx: 0
|
10 |
+
sample_frame_rate: 1
|
11 |
+
validation_data:
|
12 |
+
prompts:
|
13 |
+
- a car is moving on the snow
|
14 |
+
- a jeep car is moving on the road
|
15 |
+
- a jeep car is moving on the desert
|
16 |
+
video_length: 8
|
17 |
+
width: 512
|
18 |
+
height: 512
|
19 |
+
num_inference_steps: 50
|
20 |
+
guidance_scale: 7.5
|
21 |
+
num_inv_steps: 50
|
22 |
+
# args for null-text inv
|
23 |
+
use_null_inv: True
|
24 |
+
null_inner_steps: 1
|
25 |
+
null_base_lr: 1e-2
|
26 |
+
null_uncond_ratio: -0.5
|
27 |
+
null_normal_infer: True
|
28 |
+
|
29 |
+
input_batch_size: 1
|
30 |
+
seed: 33
|
31 |
+
mixed_precision: "no"
|
32 |
+
gradient_checkpointing: True
|
33 |
+
enable_xformers_memory_efficient_attention: True
|
34 |
+
# test-time adaptation
|
35 |
+
use_sc_attn: True
|
36 |
+
use_st_attn: True
|
37 |
+
st_attn_idx: 0
|
configs/car-turn.yaml
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
pretrained_model_path: checkpoints/stable-diffusion-v1-4
|
2 |
+
output_dir: "outputs/car-turn"
|
3 |
+
|
4 |
+
input_data:
|
5 |
+
video_path: "data/car-turn.mp4"
|
6 |
+
prompt: "a jeep car is moving on the road"
|
7 |
+
n_sample_frames: 8
|
8 |
+
width: 512
|
9 |
+
height: 512
|
10 |
+
sample_start_idx: 0
|
11 |
+
sample_frame_rate: 6
|
12 |
+
|
13 |
+
validation_data:
|
14 |
+
prompts:
|
15 |
+
- "a jeep car is moving on the beach"
|
16 |
+
- "a jeep car is moving on the snow"
|
17 |
+
- "a Porsche car is moving on the desert"
|
18 |
+
video_length: 8
|
19 |
+
width: 512
|
20 |
+
height: 512
|
21 |
+
num_inference_steps: 50
|
22 |
+
guidance_scale: 7.5
|
23 |
+
num_inv_steps: 50
|
24 |
+
# args for null-text inv
|
25 |
+
use_null_inv: True
|
26 |
+
null_inner_steps: 1
|
27 |
+
null_base_lr: 1e-2
|
28 |
+
null_uncond_ratio: -0.5
|
29 |
+
null_normal_infer: True
|
30 |
+
|
31 |
+
input_batch_size: 1
|
32 |
+
seed: 33
|
33 |
+
mixed_precision: "no"
|
34 |
+
gradient_checkpointing: True
|
35 |
+
enable_xformers_memory_efficient_attention: True
|
36 |
+
# test-time adaptation
|
37 |
+
use_sc_attn: True
|
38 |
+
use_st_attn: True
|
39 |
+
st_attn_idx: 0
|
configs/child-riding.yaml
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
pretrained_model_path: checkpoints/stable-diffusion-v1-4
|
3 |
+
output_dir: outputs/child-riding
|
4 |
+
|
5 |
+
input_data:
|
6 |
+
video_path: data/child-riding.mp4
|
7 |
+
prompt: "a child is riding a bike on the road"
|
8 |
+
n_sample_frames: 8
|
9 |
+
width: 512
|
10 |
+
height: 512
|
11 |
+
sample_start_idx: 0
|
12 |
+
sample_frame_rate: 1
|
13 |
+
|
14 |
+
validation_data:
|
15 |
+
# inv_latent: "outputs_2d/car-turn/inv_latents/ddim_latent-0.pt" # latent inversed w/o SCAttn !
|
16 |
+
prompts:
|
17 |
+
- a lego child is riding a bike on the road
|
18 |
+
- a child is riding a bike on the flooded road
|
19 |
+
video_length: 8
|
20 |
+
width: 512
|
21 |
+
height: 512
|
22 |
+
num_inference_steps: 50
|
23 |
+
guidance_scale: 7.5
|
24 |
+
num_inv_steps: 50
|
25 |
+
# args for null-text inv
|
26 |
+
use_null_inv: True
|
27 |
+
null_inner_steps: 1
|
28 |
+
null_base_lr: 1e-2
|
29 |
+
null_uncond_ratio: -0.5
|
30 |
+
null_normal_infer: True
|
31 |
+
|
32 |
+
input_batch_size: 1
|
33 |
+
seed: 33
|
34 |
+
mixed_precision: "no"
|
35 |
+
gradient_checkpointing: True
|
36 |
+
enable_xformers_memory_efficient_attention: True
|
37 |
+
# test-time adaptation
|
38 |
+
use_sc_attn: True
|
39 |
+
use_st_attn: True
|
40 |
+
st_attn_idx: 0
|
configs/cow-walking.yaml
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
pretrained_model_path: checkpoints/stable-diffusion-v1-4
|
2 |
+
output_dir: outputs/cow-walking
|
3 |
+
input_data:
|
4 |
+
video_path: data/cow-walking.mp4
|
5 |
+
prompt: a cow is walking on the grass
|
6 |
+
n_sample_frames: 8
|
7 |
+
width: 512
|
8 |
+
height: 512
|
9 |
+
sample_start_idx: 0
|
10 |
+
sample_frame_rate: 2
|
11 |
+
validation_data:
|
12 |
+
prompts:
|
13 |
+
- a lion is walking on the grass
|
14 |
+
- a dog is walking on the grass
|
15 |
+
- a cow is walking on the snow
|
16 |
+
video_length: 8
|
17 |
+
width: 512
|
18 |
+
height: 512
|
19 |
+
num_inference_steps: 50
|
20 |
+
guidance_scale: 7.5
|
21 |
+
num_inv_steps: 50
|
22 |
+
# args for null-text inv
|
23 |
+
use_null_inv: True
|
24 |
+
null_inner_steps: 1
|
25 |
+
null_base_lr: 1e-2
|
26 |
+
null_uncond_ratio: -0.5
|
27 |
+
null_normal_infer: True
|
28 |
+
|
29 |
+
input_batch_size: 1
|
30 |
+
seed: 33
|
31 |
+
mixed_precision: "no"
|
32 |
+
gradient_checkpointing: True
|
33 |
+
enable_xformers_memory_efficient_attention: True
|
34 |
+
# test-time adaptation
|
35 |
+
use_sc_attn: True
|
36 |
+
use_st_attn: True
|
37 |
+
st_attn_idx: 0
|
configs/dog-walking.yaml
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
pretrained_model_path: checkpoints/stable-diffusion-v1-4
|
2 |
+
output_dir: outputs/dog_walking
|
3 |
+
input_data:
|
4 |
+
video_path: data/dog-walking.mp4
|
5 |
+
prompt: a dog is walking on the ground
|
6 |
+
n_sample_frames: 8
|
7 |
+
width: 512
|
8 |
+
height: 512
|
9 |
+
sample_start_idx: 15
|
10 |
+
sample_frame_rate: 3
|
11 |
+
validation_data:
|
12 |
+
prompts:
|
13 |
+
- a dog is walking on the ground, Van Gogh style
|
14 |
+
video_length: 8
|
15 |
+
width: 512
|
16 |
+
height: 512
|
17 |
+
num_inference_steps: 50
|
18 |
+
guidance_scale: 7.5
|
19 |
+
num_inv_steps: 50
|
20 |
+
# args for null-text inv
|
21 |
+
use_null_inv: True
|
22 |
+
null_inner_steps: 1
|
23 |
+
null_base_lr: 1e-2
|
24 |
+
null_uncond_ratio: -0.5
|
25 |
+
null_normal_infer: True
|
26 |
+
|
27 |
+
input_batch_size: 1
|
28 |
+
seed: 33
|
29 |
+
mixed_precision: "no"
|
30 |
+
gradient_checkpointing: True
|
31 |
+
enable_xformers_memory_efficient_attention: True
|
32 |
+
# test-time adaptation
|
33 |
+
use_sc_attn: True
|
34 |
+
use_st_attn: True
|
35 |
+
st_attn_idx: 0
|
configs/horse-running.yaml
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
pretrained_model_path: checkpoints/stable-diffusion-v1-4
|
2 |
+
output_dir: outputs/horse-running
|
3 |
+
input_data:
|
4 |
+
video_path: data/horse-running.mp4
|
5 |
+
prompt: a horse is running on the beach
|
6 |
+
n_sample_frames: 8
|
7 |
+
width: 512
|
8 |
+
height: 512
|
9 |
+
sample_start_idx: 0
|
10 |
+
sample_frame_rate: 2
|
11 |
+
validation_data:
|
12 |
+
prompts:
|
13 |
+
- a dog is running on the beach
|
14 |
+
- a dog is running on the desert
|
15 |
+
video_length: 8
|
16 |
+
width: 512
|
17 |
+
height: 512
|
18 |
+
num_inference_steps: 50
|
19 |
+
guidance_scale: 7.5
|
20 |
+
num_inv_steps: 50
|
21 |
+
# args for null-text inv
|
22 |
+
use_null_inv: True
|
23 |
+
null_inner_steps: 1
|
24 |
+
null_base_lr: 1e-2
|
25 |
+
null_uncond_ratio: -0.5
|
26 |
+
null_normal_infer: True
|
27 |
+
|
28 |
+
input_batch_size: 1
|
29 |
+
seed: 33
|
30 |
+
mixed_precision: "no"
|
31 |
+
gradient_checkpointing: True
|
32 |
+
enable_xformers_memory_efficient_attention: True
|
33 |
+
# test-time adaptation
|
34 |
+
use_sc_attn: True
|
35 |
+
use_st_attn: True
|
36 |
+
st_attn_idx: 0
|
configs/lion-roaring.yaml
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
pretrained_model_path: checkpoints/stable-diffusion-v1-4
|
2 |
+
output_dir: ./outputs/lion-roaring
|
3 |
+
input_data:
|
4 |
+
video_path: data/lion-roaring.mp4
|
5 |
+
prompt: a lion is roaring
|
6 |
+
n_sample_frames: 8
|
7 |
+
width: 512
|
8 |
+
height: 512
|
9 |
+
sample_start_idx: 0
|
10 |
+
sample_frame_rate: 2
|
11 |
+
validation_data:
|
12 |
+
prompts:
|
13 |
+
- a lego lion is roaring
|
14 |
+
- a wolf is roaring, anime style
|
15 |
+
- a lion is roaring, anime style
|
16 |
+
video_length: 8
|
17 |
+
width: 512
|
18 |
+
height: 512
|
19 |
+
num_inference_steps: 50
|
20 |
+
guidance_scale: 7.5
|
21 |
+
num_inv_steps: 50
|
22 |
+
# args for null-text inv
|
23 |
+
use_null_inv: True
|
24 |
+
null_inner_steps: 1
|
25 |
+
null_base_lr: 1e-2
|
26 |
+
null_uncond_ratio: -0.5
|
27 |
+
null_normal_infer: True
|
28 |
+
|
29 |
+
input_batch_size: 1
|
30 |
+
seed: 33
|
31 |
+
mixed_precision: "no"
|
32 |
+
gradient_checkpointing: True
|
33 |
+
enable_xformers_memory_efficient_attention: True
|
34 |
+
# test-time adaptation
|
35 |
+
use_sc_attn: True
|
36 |
+
use_st_attn: True
|
37 |
+
st_attn_idx: 0
|
configs/man-running.yaml
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
pretrained_model_path: checkpoints/stable-diffusion-v1-4
|
2 |
+
output_dir: outputs/man-running
|
3 |
+
input_data:
|
4 |
+
video_path: data/man-running.mp4
|
5 |
+
prompt: a man is running
|
6 |
+
n_sample_frames: 8
|
7 |
+
width: 512
|
8 |
+
height: 512
|
9 |
+
sample_start_idx: 25
|
10 |
+
sample_frame_rate: 2
|
11 |
+
validation_data:
|
12 |
+
prompts:
|
13 |
+
- Stephen Curry is running in Time Square
|
14 |
+
- a man is running, Van Gogh style
|
15 |
+
- a man is running in New York City
|
16 |
+
video_length: 8
|
17 |
+
width: 512
|
18 |
+
height: 512
|
19 |
+
num_inference_steps: 50
|
20 |
+
guidance_scale: 7.5
|
21 |
+
num_inv_steps: 50
|
22 |
+
# args for null-text inv
|
23 |
+
use_null_inv: True
|
24 |
+
null_inner_steps: 1
|
25 |
+
null_base_lr: 1e-2
|
26 |
+
null_uncond_ratio: -0.5
|
27 |
+
null_normal_infer: True
|
28 |
+
|
29 |
+
input_batch_size: 1
|
30 |
+
seed: 33
|
31 |
+
mixed_precision: "no"
|
32 |
+
gradient_checkpointing: True
|
33 |
+
enable_xformers_memory_efficient_attention: True
|
34 |
+
# test-time adaptation
|
35 |
+
use_sc_attn: True
|
36 |
+
use_st_attn: True
|
37 |
+
st_attn_idx: 0
|
configs/man-surfing.yaml
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
pretrained_model_path: checkpoints/stable-diffusion-v1-4
|
2 |
+
output_dir: outputs/man-surfing
|
3 |
+
input_data:
|
4 |
+
video_path: data/man-surfing.mp4
|
5 |
+
prompt: a man is surfing
|
6 |
+
n_sample_frames: 8
|
7 |
+
width: 512
|
8 |
+
height: 512
|
9 |
+
sample_start_idx: 0
|
10 |
+
sample_frame_rate: 3
|
11 |
+
validation_data:
|
12 |
+
prompts:
|
13 |
+
- a boy is surfing in the desert
|
14 |
+
- Iron Man is surfing is surfing
|
15 |
+
video_length: 8
|
16 |
+
width: 512
|
17 |
+
height: 512
|
18 |
+
num_inference_steps: 50
|
19 |
+
guidance_scale: 7.5
|
20 |
+
num_inv_steps: 50
|
21 |
+
# args for null-text inv
|
22 |
+
use_null_inv: True
|
23 |
+
null_inner_steps: 1
|
24 |
+
null_base_lr: 1e-2
|
25 |
+
null_uncond_ratio: -0.5
|
26 |
+
null_normal_infer: True
|
27 |
+
|
28 |
+
input_batch_size: 1
|
29 |
+
seed: 33
|
30 |
+
mixed_precision: "no"
|
31 |
+
gradient_checkpointing: True
|
32 |
+
enable_xformers_memory_efficient_attention: True
|
33 |
+
# test-time adaptation
|
34 |
+
use_sc_attn: True
|
35 |
+
use_st_attn: True
|
36 |
+
st_attn_idx: 0
|
configs/rabbit-watermelon.yaml
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
pretrained_model_path: checkpoints/stable-diffusion-v1-4
|
2 |
+
output_dir: "outputs/rabbit-watermelon"
|
3 |
+
|
4 |
+
input_data:
|
5 |
+
video_path: "data/rabbit-watermelon.mp4"
|
6 |
+
prompt: "a rabbit is eating a watermelon"
|
7 |
+
n_sample_frames: 8
|
8 |
+
width: 512
|
9 |
+
height: 512
|
10 |
+
sample_start_idx: 0
|
11 |
+
sample_frame_rate: 6
|
12 |
+
|
13 |
+
validation_data:
|
14 |
+
prompts:
|
15 |
+
- "a tiger is eating a watermelon"
|
16 |
+
- "a rabbit is eating an orange"
|
17 |
+
- "a rabbit is eating a pizza"
|
18 |
+
- "a puppy is eating an orange"
|
19 |
+
video_length: 8
|
20 |
+
width: 512
|
21 |
+
height: 512
|
22 |
+
num_inference_steps: 50
|
23 |
+
guidance_scale: 7.5
|
24 |
+
num_inv_steps: 50
|
25 |
+
# args for null-text inv
|
26 |
+
use_null_inv: True
|
27 |
+
null_inner_steps: 1
|
28 |
+
null_base_lr: 1e-2
|
29 |
+
null_uncond_ratio: -0.5
|
30 |
+
null_normal_infer: True
|
31 |
+
|
32 |
+
input_batch_size: 1
|
33 |
+
seed: 33
|
34 |
+
mixed_precision: "no"
|
35 |
+
gradient_checkpointing: True
|
36 |
+
enable_xformers_memory_efficient_attention: True
|
37 |
+
# test-time adaptation
|
38 |
+
use_sc_attn: True
|
39 |
+
use_st_attn: True
|
40 |
+
st_attn_idx: 0
|
configs/skateboard-dog.yaml
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
pretrained_model_path: checkpoints/stable-diffusion-v1-4
|
2 |
+
output_dir: outputs/skateboard-dog
|
3 |
+
input_data:
|
4 |
+
video_path: data/skateboard-dog.avi
|
5 |
+
prompt: A man with a dog skateboarding on the road
|
6 |
+
n_sample_frames: 8
|
7 |
+
width: 512
|
8 |
+
height: 512
|
9 |
+
sample_start_idx: 0
|
10 |
+
sample_frame_rate: 3
|
11 |
+
validation_data:
|
12 |
+
prompts:
|
13 |
+
- A man with a dog skateboarding on the desert
|
14 |
+
video_length: 8
|
15 |
+
width: 512
|
16 |
+
height: 512
|
17 |
+
num_inference_steps: 50
|
18 |
+
guidance_scale: 7.5
|
19 |
+
num_inv_steps: 50
|
20 |
+
# args for null-text inv
|
21 |
+
use_null_inv: True
|
22 |
+
null_inner_steps: 1
|
23 |
+
null_base_lr: 1e-2
|
24 |
+
null_uncond_ratio: -0.5
|
25 |
+
null_normal_infer: True
|
26 |
+
|
27 |
+
input_batch_size: 1
|
28 |
+
seed: 33
|
29 |
+
mixed_precision: "no"
|
30 |
+
gradient_checkpointing: True
|
31 |
+
enable_xformers_memory_efficient_attention: True
|
32 |
+
# test-time adaptation
|
33 |
+
use_sc_attn: True
|
34 |
+
use_st_attn: True
|
35 |
+
st_attn_idx: 0
|
configs/skateboard-man.yaml
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
pretrained_model_path: checkpoints/stable-diffusion-v1-4
|
2 |
+
output_dir: outputs/skateboard-man
|
3 |
+
input_data:
|
4 |
+
video_path: data/skateboard-man.mp4
|
5 |
+
prompt: a man is playing skateboard on the ground
|
6 |
+
n_sample_frames: 8
|
7 |
+
width: 512
|
8 |
+
height: 512
|
9 |
+
sample_start_idx: 0
|
10 |
+
sample_frame_rate: 3
|
11 |
+
validation_data:
|
12 |
+
prompts:
|
13 |
+
- a boy is playing skateboard on the ground
|
14 |
+
video_length: 8
|
15 |
+
width: 512
|
16 |
+
height: 512
|
17 |
+
num_inference_steps: 50
|
18 |
+
guidance_scale: 7.5
|
19 |
+
num_inv_steps: 50
|
20 |
+
# args for null-text inv
|
21 |
+
use_null_inv: True
|
22 |
+
null_inner_steps: 1
|
23 |
+
null_base_lr: 1e-2
|
24 |
+
null_uncond_ratio: -0.5
|
25 |
+
null_normal_infer: True
|
26 |
+
|
27 |
+
input_batch_size: 1
|
28 |
+
seed: 33
|
29 |
+
mixed_precision: "no"
|
30 |
+
gradient_checkpointing: True
|
31 |
+
enable_xformers_memory_efficient_attention: True
|
32 |
+
# test-time adaptation
|
33 |
+
use_sc_attn: True
|
34 |
+
use_st_attn: True
|
35 |
+
st_attn_idx: 0
|
gradio_demo/app_running.py
ADDED
@@ -0,0 +1,178 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
from __future__ import annotations
|
4 |
+
|
5 |
+
import os
|
6 |
+
|
7 |
+
import gradio as gr
|
8 |
+
|
9 |
+
from gradio_demo.runner import Runner
|
10 |
+
|
11 |
+
|
12 |
+
def create_demo(runner: Runner,
|
13 |
+
pipe: InferencePipeline | None = None) -> gr.Blocks:
|
14 |
+
hf_token = os.getenv('HF_TOKEN')
|
15 |
+
with gr.Blocks() as demo:
|
16 |
+
with gr.Row():
|
17 |
+
with gr.Column():
|
18 |
+
with gr.Box():
|
19 |
+
gr.Markdown('Input Data')
|
20 |
+
input_video = gr.File(label='Input video')
|
21 |
+
input_prompt = gr.Textbox(
|
22 |
+
label='Input prompt',
|
23 |
+
max_lines=1,
|
24 |
+
placeholder='A car is moving on the road.')
|
25 |
+
gr.Markdown('''
|
26 |
+
- Upload a video and write a `Input Prompt` that describes the video.
|
27 |
+
''')
|
28 |
+
|
29 |
+
with gr.Column():
|
30 |
+
with gr.Box():
|
31 |
+
gr.Markdown('Input Parameters')
|
32 |
+
with gr.Row():
|
33 |
+
model_path = gr.Text(
|
34 |
+
label='Path to off-the-shelf model',
|
35 |
+
value='CompVis/stable-diffusion-v1-4',
|
36 |
+
max_lines=1)
|
37 |
+
resolution = gr.Dropdown(choices=['512', '768'],
|
38 |
+
value='512',
|
39 |
+
label='Resolution',
|
40 |
+
visible=False)
|
41 |
+
|
42 |
+
with gr.Accordion('Advanced settings', open=False):
|
43 |
+
sample_start_idx = gr.Number(
|
44 |
+
label='Start Frame Index',value=0)
|
45 |
+
sample_frame_rate = gr.Number(
|
46 |
+
label='Frame Rate',value=1)
|
47 |
+
n_sample_frames = gr.Number(
|
48 |
+
label='Number of Frames',value=8)
|
49 |
+
guidance_scale = gr.Number(
|
50 |
+
label='Guidance Scale', value=7.5)
|
51 |
+
seed = gr.Slider(label='Seed',
|
52 |
+
minimum=0,
|
53 |
+
maximum=100000,
|
54 |
+
step=1,
|
55 |
+
randomize=True,
|
56 |
+
value=33)
|
57 |
+
input_token = gr.Text(label='Hugging Face Write Token',
|
58 |
+
placeholder='',
|
59 |
+
visible=False if hf_token else True)
|
60 |
+
gr.Markdown('''
|
61 |
+
- Upload input video or choose an exmple blow
|
62 |
+
- Set hyperparameters & click start
|
63 |
+
- It takes a few minutes to download model first
|
64 |
+
''')
|
65 |
+
|
66 |
+
with gr.Row():
|
67 |
+
with gr.Column():
|
68 |
+
validation_prompt = gr.Text(
|
69 |
+
label='Validation Prompt',
|
70 |
+
placeholder=
|
71 |
+
'prompt to test the model, e.g: a Lego man is surfing')
|
72 |
+
|
73 |
+
remove_gpu_after_running = gr.Checkbox(
|
74 |
+
label='Remove GPU after running',
|
75 |
+
value=False,
|
76 |
+
interactive=bool(os.getenv('SPACE_ID')),
|
77 |
+
visible=False)
|
78 |
+
|
79 |
+
with gr.Row():
|
80 |
+
result = gr.Video(label='Result')
|
81 |
+
|
82 |
+
# examples
|
83 |
+
with gr.Row():
|
84 |
+
examples = [
|
85 |
+
[
|
86 |
+
'CompVis/stable-diffusion-v1-4',
|
87 |
+
"data/car-moving.mp4",
|
88 |
+
'A car is moving on the road.',
|
89 |
+
8, 0, 1,
|
90 |
+
'A jeep car is moving on the desert.',
|
91 |
+
7.5, 512, 33,
|
92 |
+
False, None,
|
93 |
+
],
|
94 |
+
|
95 |
+
[
|
96 |
+
'CompVis/stable-diffusion-v1-4',
|
97 |
+
"data/black-swan.mp4",
|
98 |
+
'A blackswan is swimming on the water.',
|
99 |
+
8, 0, 4,
|
100 |
+
'A white swan is swimming on the water.',
|
101 |
+
7.5, 512, 33,
|
102 |
+
False, None,
|
103 |
+
],
|
104 |
+
|
105 |
+
[
|
106 |
+
'CompVis/stable-diffusion-v1-4',
|
107 |
+
"data/child-riding.mp4",
|
108 |
+
'A child is riding a bike on the road.',
|
109 |
+
8, 0, 1,
|
110 |
+
'A lego child is riding a bike on the road.',
|
111 |
+
7.5, 512, 33,
|
112 |
+
False, None,
|
113 |
+
],
|
114 |
+
|
115 |
+
[
|
116 |
+
'CompVis/stable-diffusion-v1-4',
|
117 |
+
"data/car-turn.mp4",
|
118 |
+
'A jeep car is moving on the road.',
|
119 |
+
8, 0, 6,
|
120 |
+
'A jeep car is moving on the snow.',
|
121 |
+
7.5, 512, 33,
|
122 |
+
False, None,
|
123 |
+
],
|
124 |
+
|
125 |
+
[
|
126 |
+
'CompVis/stable-diffusion-v1-4',
|
127 |
+
"data/rabbit-watermelon.mp4",
|
128 |
+
'A rabbit is eating a watermelon.',
|
129 |
+
8, 0, 6,
|
130 |
+
'A puppy is eating an orange.',
|
131 |
+
7.5, 512, 33,
|
132 |
+
False, None,
|
133 |
+
],
|
134 |
+
|
135 |
+
[
|
136 |
+
'CompVis/stable-diffusion-v1-4',
|
137 |
+
"data/brown-bear.mp4",
|
138 |
+
'A brown bear is sitting on the ground.',
|
139 |
+
8, 0, 6,
|
140 |
+
'A black bear is sitting on the grass.',
|
141 |
+
7.5, 512, 33,
|
142 |
+
False, None,
|
143 |
+
],
|
144 |
+
]
|
145 |
+
gr.Examples(examples=examples,
|
146 |
+
fn=runner.run_vid2vid_zero,
|
147 |
+
inputs=[
|
148 |
+
model_path, input_video, input_prompt,
|
149 |
+
n_sample_frames, sample_start_idx, sample_frame_rate,
|
150 |
+
validation_prompt, guidance_scale, resolution, seed,
|
151 |
+
remove_gpu_after_running,
|
152 |
+
input_token,
|
153 |
+
],
|
154 |
+
outputs=result,
|
155 |
+
cache_examples=os.getenv('SYSTEM') == 'spaces'
|
156 |
+
)
|
157 |
+
|
158 |
+
# run
|
159 |
+
run_button_vid2vid_zero = gr.Button('Start vid2vid-zero')
|
160 |
+
run_button_vid2vid_zero.click(
|
161 |
+
fn=runner.run_vid2vid_zero,
|
162 |
+
inputs=[
|
163 |
+
model_path, input_video, input_prompt,
|
164 |
+
n_sample_frames, sample_start_idx, sample_frame_rate,
|
165 |
+
validation_prompt, guidance_scale, resolution, seed,
|
166 |
+
remove_gpu_after_running,
|
167 |
+
input_token,
|
168 |
+
],
|
169 |
+
outputs=result)
|
170 |
+
|
171 |
+
return demo
|
172 |
+
|
173 |
+
|
174 |
+
if __name__ == '__main__':
|
175 |
+
hf_token = os.getenv('HF_TOKEN')
|
176 |
+
runner = Runner(hf_token)
|
177 |
+
demo = create_demo(runner)
|
178 |
+
demo.queue(max_size=1).launch(share=False)
|
gradio_demo/runner.py
ADDED
@@ -0,0 +1,133 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import annotations
|
2 |
+
|
3 |
+
import datetime
|
4 |
+
import os
|
5 |
+
import pathlib
|
6 |
+
import shlex
|
7 |
+
import shutil
|
8 |
+
import subprocess
|
9 |
+
import sys
|
10 |
+
|
11 |
+
import gradio as gr
|
12 |
+
import slugify
|
13 |
+
import torch
|
14 |
+
import huggingface_hub
|
15 |
+
from huggingface_hub import HfApi
|
16 |
+
from omegaconf import OmegaConf
|
17 |
+
|
18 |
+
|
19 |
+
ORIGINAL_SPACE_ID = 'BAAI/vid2vid-zero'
|
20 |
+
SPACE_ID = os.getenv('SPACE_ID', ORIGINAL_SPACE_ID)
|
21 |
+
|
22 |
+
|
23 |
+
class Runner:
|
24 |
+
def __init__(self, hf_token: str | None = None):
|
25 |
+
self.hf_token = hf_token
|
26 |
+
|
27 |
+
self.checkpoint_dir = pathlib.Path('checkpoints')
|
28 |
+
self.checkpoint_dir.mkdir(exist_ok=True)
|
29 |
+
|
30 |
+
def download_base_model(self, base_model_id: str, token=None) -> str:
|
31 |
+
model_dir = self.checkpoint_dir / base_model_id
|
32 |
+
if not model_dir.exists():
|
33 |
+
org_name = base_model_id.split('/')[0]
|
34 |
+
org_dir = self.checkpoint_dir / org_name
|
35 |
+
org_dir.mkdir(exist_ok=True)
|
36 |
+
print(f'https://huggingface.co/{base_model_id}')
|
37 |
+
if token == None:
|
38 |
+
subprocess.run(shlex.split(
|
39 |
+
f'git clone https://huggingface.co/{base_model_id}'),
|
40 |
+
cwd=org_dir)
|
41 |
+
return model_dir.as_posix()
|
42 |
+
else:
|
43 |
+
temp_path = huggingface_hub.snapshot_download(base_model_id, use_auth_token=token)
|
44 |
+
print(temp_path, org_dir)
|
45 |
+
# subprocess.run(shlex.split(f'mv {temp_path} {model_dir.as_posix()}'))
|
46 |
+
# return model_dir.as_posix()
|
47 |
+
return temp_path
|
48 |
+
|
49 |
+
def join_model_library_org(self, token: str) -> None:
|
50 |
+
subprocess.run(
|
51 |
+
shlex.split(
|
52 |
+
f'curl -X POST -H "Authorization: Bearer {token}" -H "Content-Type: application/json" {URL_TO_JOIN_MODEL_LIBRARY_ORG}'
|
53 |
+
))
|
54 |
+
|
55 |
+
def run_vid2vid_zero(
|
56 |
+
self,
|
57 |
+
model_path: str,
|
58 |
+
input_video: str,
|
59 |
+
prompt: str,
|
60 |
+
n_sample_frames: int,
|
61 |
+
sample_start_idx: int,
|
62 |
+
sample_frame_rate: int,
|
63 |
+
validation_prompt: str,
|
64 |
+
guidance_scale: float,
|
65 |
+
resolution: str,
|
66 |
+
seed: int,
|
67 |
+
remove_gpu_after_running: bool,
|
68 |
+
input_token: str = None,
|
69 |
+
) -> str:
|
70 |
+
|
71 |
+
if not torch.cuda.is_available():
|
72 |
+
raise gr.Error('CUDA is not available.')
|
73 |
+
if input_video is None:
|
74 |
+
raise gr.Error('You need to upload a video.')
|
75 |
+
if not prompt:
|
76 |
+
raise gr.Error('The input prompt is missing.')
|
77 |
+
if not validation_prompt:
|
78 |
+
raise gr.Error('The validation prompt is missing.')
|
79 |
+
|
80 |
+
resolution = int(resolution)
|
81 |
+
n_sample_frames = int(n_sample_frames)
|
82 |
+
sample_start_idx = int(sample_start_idx)
|
83 |
+
sample_frame_rate = int(sample_frame_rate)
|
84 |
+
|
85 |
+
repo_dir = pathlib.Path(__file__).parent
|
86 |
+
prompt_path = prompt.replace(' ', '_')
|
87 |
+
output_dir = repo_dir / 'outputs' / prompt_path
|
88 |
+
output_dir.mkdir(parents=True, exist_ok=True)
|
89 |
+
|
90 |
+
config = OmegaConf.load('configs/black-swan.yaml')
|
91 |
+
# config.pretrained_model_path = self.download_base_model(model_path, token=input_token)
|
92 |
+
config.pretrained_model_path = "checkpoints/stable-diffusion-v1-4" # TODO
|
93 |
+
|
94 |
+
config.output_dir = output_dir.as_posix()
|
95 |
+
config.input_data.video_path = input_video.name # type: ignore
|
96 |
+
config.input_data.prompt = prompt
|
97 |
+
config.input_data.n_sample_frames = n_sample_frames
|
98 |
+
config.input_data.width = resolution
|
99 |
+
config.input_data.height = resolution
|
100 |
+
config.input_data.sample_start_idx = sample_start_idx
|
101 |
+
config.input_data.sample_frame_rate = sample_frame_rate
|
102 |
+
|
103 |
+
config.validation_data.prompts = [validation_prompt]
|
104 |
+
config.validation_data.video_length = 8
|
105 |
+
config.validation_data.width = resolution
|
106 |
+
config.validation_data.height = resolution
|
107 |
+
config.validation_data.num_inference_steps = 50
|
108 |
+
config.validation_data.guidance_scale = guidance_scale
|
109 |
+
|
110 |
+
config.input_batch_size = 1
|
111 |
+
config.seed = seed
|
112 |
+
|
113 |
+
config_path = output_dir / 'config.yaml'
|
114 |
+
with open(config_path, 'w') as f:
|
115 |
+
OmegaConf.save(config, f)
|
116 |
+
|
117 |
+
command = f'accelerate launch test_vid2vid_zero.py --config {config_path}'
|
118 |
+
subprocess.run(shlex.split(command))
|
119 |
+
|
120 |
+
output_video_path = os.path.join(output_dir, "sample-all.mp4")
|
121 |
+
print(f"video path for gradio: {output_video_path}")
|
122 |
+
message = 'Running completed!'
|
123 |
+
print(message)
|
124 |
+
|
125 |
+
if remove_gpu_after_running:
|
126 |
+
space_id = os.getenv('SPACE_ID')
|
127 |
+
if space_id:
|
128 |
+
api = HfApi(
|
129 |
+
token=self.hf_token if self.hf_token else input_token)
|
130 |
+
api.request_space_hardware(repo_id=space_id,
|
131 |
+
hardware='cpu-basic')
|
132 |
+
|
133 |
+
return output_video_path
|
gradio_demo/style.css
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
h1 {
|
2 |
+
text-align: center;
|
3 |
+
}
|
requirements.txt
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch==1.12.1
|
2 |
+
torchvision==0.13.1
|
3 |
+
diffusers[torch]==0.11.1
|
4 |
+
transformers>=4.25.1
|
5 |
+
bitsandbytes==0.35.4
|
6 |
+
decord==0.6.0
|
7 |
+
accelerate
|
8 |
+
tensorboard
|
9 |
+
modelcards
|
10 |
+
omegaconf
|
11 |
+
einops
|
12 |
+
imageio
|
13 |
+
ftfy
|
test_vid2vid_zero.py
ADDED
@@ -0,0 +1,266 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import datetime
|
3 |
+
import logging
|
4 |
+
import inspect
|
5 |
+
import math
|
6 |
+
import os
|
7 |
+
import warnings
|
8 |
+
from typing import Dict, Optional, Tuple
|
9 |
+
from omegaconf import OmegaConf
|
10 |
+
|
11 |
+
import torch
|
12 |
+
import torch.nn.functional as F
|
13 |
+
import torch.utils.checkpoint
|
14 |
+
|
15 |
+
import diffusers
|
16 |
+
import transformers
|
17 |
+
from accelerate import Accelerator
|
18 |
+
from accelerate.logging import get_logger
|
19 |
+
from accelerate.utils import set_seed
|
20 |
+
from diffusers import AutoencoderKL, DDPMScheduler, DDIMScheduler
|
21 |
+
from diffusers.optimization import get_scheduler
|
22 |
+
from diffusers.utils import check_min_version
|
23 |
+
from diffusers.utils.import_utils import is_xformers_available
|
24 |
+
from tqdm.auto import tqdm
|
25 |
+
from transformers import CLIPTextModel, CLIPTokenizer
|
26 |
+
|
27 |
+
from vid2vid_zero.models.unet_2d_condition import UNet2DConditionModel
|
28 |
+
from vid2vid_zero.data.dataset import VideoDataset
|
29 |
+
from vid2vid_zero.pipelines.pipeline_vid2vid_zero import Vid2VidZeroPipeline
|
30 |
+
from vid2vid_zero.util import save_videos_grid, save_videos_as_images, ddim_inversion
|
31 |
+
from einops import rearrange
|
32 |
+
|
33 |
+
from vid2vid_zero.p2p.p2p_stable import AttentionReplace, AttentionRefine
|
34 |
+
from vid2vid_zero.p2p.ptp_utils import register_attention_control
|
35 |
+
from vid2vid_zero.p2p.null_text_w_ptp import NullInversion
|
36 |
+
|
37 |
+
|
38 |
+
# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
|
39 |
+
check_min_version("0.10.0.dev0")
|
40 |
+
|
41 |
+
logger = get_logger(__name__, log_level="INFO")
|
42 |
+
|
43 |
+
|
44 |
+
def prepare_control(unet, prompts, validation_data):
|
45 |
+
assert len(prompts) == 2
|
46 |
+
|
47 |
+
print(prompts[0])
|
48 |
+
print(prompts[1])
|
49 |
+
length1 = len(prompts[0].split(' '))
|
50 |
+
length2 = len(prompts[1].split(' '))
|
51 |
+
if length1 == length2:
|
52 |
+
# prepare for attn guidance
|
53 |
+
cross_replace_steps = 0.8
|
54 |
+
self_replace_steps = 0.4
|
55 |
+
controller = AttentionReplace(prompts, validation_data['num_inference_steps'],
|
56 |
+
cross_replace_steps=cross_replace_steps,
|
57 |
+
self_replace_steps=self_replace_steps)
|
58 |
+
else:
|
59 |
+
cross_replace_steps = 0.8
|
60 |
+
self_replace_steps = 0.4
|
61 |
+
controller = AttentionRefine(prompts, validation_data['num_inference_steps'],
|
62 |
+
cross_replace_steps=self_replace_steps,
|
63 |
+
self_replace_steps=self_replace_steps)
|
64 |
+
|
65 |
+
print(controller)
|
66 |
+
register_attention_control(unet, controller)
|
67 |
+
|
68 |
+
# the update of unet forward function is inplace
|
69 |
+
return cross_replace_steps, self_replace_steps
|
70 |
+
|
71 |
+
|
72 |
+
def main(
|
73 |
+
pretrained_model_path: str,
|
74 |
+
output_dir: str,
|
75 |
+
input_data: Dict,
|
76 |
+
validation_data: Dict,
|
77 |
+
input_batch_size: int = 1,
|
78 |
+
gradient_accumulation_steps: int = 1,
|
79 |
+
gradient_checkpointing: bool = True,
|
80 |
+
mixed_precision: Optional[str] = "fp16",
|
81 |
+
enable_xformers_memory_efficient_attention: bool = True,
|
82 |
+
seed: Optional[int] = None,
|
83 |
+
use_sc_attn: bool = True,
|
84 |
+
use_st_attn: bool = True,
|
85 |
+
st_attn_idx: int = 0,
|
86 |
+
fps: int = 1,
|
87 |
+
):
|
88 |
+
*_, config = inspect.getargvalues(inspect.currentframe())
|
89 |
+
|
90 |
+
accelerator = Accelerator(
|
91 |
+
gradient_accumulation_steps=gradient_accumulation_steps,
|
92 |
+
mixed_precision=mixed_precision,
|
93 |
+
)
|
94 |
+
|
95 |
+
# Make one log on every process with the configuration for debugging.
|
96 |
+
logging.basicConfig(
|
97 |
+
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
|
98 |
+
datefmt="%m/%d/%Y %H:%M:%S",
|
99 |
+
level=logging.INFO,
|
100 |
+
)
|
101 |
+
logger.info(accelerator.state, main_process_only=False)
|
102 |
+
if accelerator.is_local_main_process:
|
103 |
+
transformers.utils.logging.set_verbosity_warning()
|
104 |
+
diffusers.utils.logging.set_verbosity_info()
|
105 |
+
else:
|
106 |
+
transformers.utils.logging.set_verbosity_error()
|
107 |
+
diffusers.utils.logging.set_verbosity_error()
|
108 |
+
|
109 |
+
# If passed along, set the training seed now.
|
110 |
+
if seed is not None:
|
111 |
+
set_seed(seed)
|
112 |
+
|
113 |
+
# Handle the output folder creation
|
114 |
+
if accelerator.is_main_process:
|
115 |
+
os.makedirs(output_dir, exist_ok=True)
|
116 |
+
os.makedirs(f"{output_dir}/sample", exist_ok=True)
|
117 |
+
OmegaConf.save(config, os.path.join(output_dir, 'config.yaml'))
|
118 |
+
|
119 |
+
# Load tokenizer and models.
|
120 |
+
tokenizer = CLIPTokenizer.from_pretrained(pretrained_model_path, subfolder="tokenizer")
|
121 |
+
text_encoder = CLIPTextModel.from_pretrained(pretrained_model_path, subfolder="text_encoder")
|
122 |
+
vae = AutoencoderKL.from_pretrained(pretrained_model_path, subfolder="vae")
|
123 |
+
unet = UNet2DConditionModel.from_pretrained(
|
124 |
+
pretrained_model_path, subfolder="unet", use_sc_attn=use_sc_attn,
|
125 |
+
use_st_attn=use_st_attn, st_attn_idx=st_attn_idx)
|
126 |
+
|
127 |
+
# Freeze vae, text_encoder, and unet
|
128 |
+
vae.requires_grad_(False)
|
129 |
+
text_encoder.requires_grad_(False)
|
130 |
+
unet.requires_grad_(False)
|
131 |
+
|
132 |
+
if enable_xformers_memory_efficient_attention:
|
133 |
+
if is_xformers_available():
|
134 |
+
unet.enable_xformers_memory_efficient_attention()
|
135 |
+
else:
|
136 |
+
raise ValueError("xformers is not available. Make sure it is installed correctly")
|
137 |
+
|
138 |
+
if gradient_checkpointing:
|
139 |
+
unet.enable_gradient_checkpointing()
|
140 |
+
|
141 |
+
# Get the training dataset
|
142 |
+
input_dataset = VideoDataset(**input_data)
|
143 |
+
|
144 |
+
# Preprocessing the dataset
|
145 |
+
input_dataset.prompt_ids = tokenizer(
|
146 |
+
input_dataset.prompt, max_length=tokenizer.model_max_length, padding="max_length", truncation=True, return_tensors="pt"
|
147 |
+
).input_ids[0]
|
148 |
+
|
149 |
+
# DataLoaders creation:
|
150 |
+
input_dataloader = torch.utils.data.DataLoader(
|
151 |
+
input_dataset, batch_size=input_batch_size
|
152 |
+
)
|
153 |
+
|
154 |
+
# Get the validation pipeline
|
155 |
+
validation_pipeline = Vid2VidZeroPipeline(
|
156 |
+
vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet,
|
157 |
+
scheduler=DDIMScheduler.from_pretrained(pretrained_model_path, subfolder="scheduler"),
|
158 |
+
safety_checker=None, feature_extractor=None,
|
159 |
+
)
|
160 |
+
validation_pipeline.enable_vae_slicing()
|
161 |
+
ddim_inv_scheduler = DDIMScheduler.from_pretrained(pretrained_model_path, subfolder='scheduler')
|
162 |
+
ddim_inv_scheduler.set_timesteps(validation_data.num_inv_steps)
|
163 |
+
|
164 |
+
# Prepare everything with our `accelerator`.
|
165 |
+
unet, input_dataloader = accelerator.prepare(
|
166 |
+
unet, input_dataloader,
|
167 |
+
)
|
168 |
+
|
169 |
+
# For mixed precision training we cast the text_encoder and vae weights to half-precision
|
170 |
+
# as these models are only used for inference, keeping weights in full precision is not required.
|
171 |
+
weight_dtype = torch.float32
|
172 |
+
if accelerator.mixed_precision == "fp16":
|
173 |
+
weight_dtype = torch.float16
|
174 |
+
elif accelerator.mixed_precision == "bf16":
|
175 |
+
weight_dtype = torch.bfloat16
|
176 |
+
|
177 |
+
# Move text_encode and vae to gpu and cast to weight_dtype
|
178 |
+
text_encoder.to(accelerator.device, dtype=weight_dtype)
|
179 |
+
vae.to(accelerator.device, dtype=weight_dtype)
|
180 |
+
|
181 |
+
# We need to recalculate our total training steps as the size of the training dataloader may have changed.
|
182 |
+
num_update_steps_per_epoch = math.ceil(len(input_dataloader) / gradient_accumulation_steps)
|
183 |
+
|
184 |
+
# We need to initialize the trackers we use, and also store our configuration.
|
185 |
+
# The trackers initializes automatically on the main process.
|
186 |
+
if accelerator.is_main_process:
|
187 |
+
accelerator.init_trackers("vid2vid-zero")
|
188 |
+
|
189 |
+
# Zero-shot Eval!
|
190 |
+
total_batch_size = input_batch_size * accelerator.num_processes * gradient_accumulation_steps
|
191 |
+
|
192 |
+
logger.info("***** Running training *****")
|
193 |
+
logger.info(f" Num examples = {len(input_dataset)}")
|
194 |
+
logger.info(f" Instantaneous batch size per device = {input_batch_size}")
|
195 |
+
logger.info(f" Total input batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
|
196 |
+
global_step = 0
|
197 |
+
|
198 |
+
unet.eval()
|
199 |
+
for step, batch in enumerate(input_dataloader):
|
200 |
+
samples = []
|
201 |
+
pixel_values = batch["pixel_values"].to(weight_dtype)
|
202 |
+
# save input video
|
203 |
+
video = (pixel_values / 2 + 0.5).clamp(0, 1).detach().cpu()
|
204 |
+
video = video.permute(0, 2, 1, 3, 4) # (b, f, c, h, w)
|
205 |
+
samples.append(video)
|
206 |
+
# start processing
|
207 |
+
video_length = pixel_values.shape[1]
|
208 |
+
pixel_values = rearrange(pixel_values, "b f c h w -> (b f) c h w")
|
209 |
+
latents = vae.encode(pixel_values).latent_dist.sample()
|
210 |
+
# take video as input
|
211 |
+
latents = rearrange(latents, "(b f) c h w -> b c f h w", f=video_length)
|
212 |
+
latents = latents * 0.18215
|
213 |
+
|
214 |
+
generator = torch.Generator(device="cuda")
|
215 |
+
generator.manual_seed(seed)
|
216 |
+
|
217 |
+
# perform inversion
|
218 |
+
ddim_inv_latent = None
|
219 |
+
if validation_data.use_null_inv:
|
220 |
+
null_inversion = NullInversion(
|
221 |
+
model=validation_pipeline, guidance_scale=validation_data.guidance_scale, null_inv_with_prompt=False,
|
222 |
+
null_normal_infer=validation_data.null_normal_infer,
|
223 |
+
)
|
224 |
+
ddim_inv_latent, uncond_embeddings = null_inversion.invert(
|
225 |
+
latents, input_dataset.prompt, verbose=True,
|
226 |
+
null_inner_steps=validation_data.null_inner_steps,
|
227 |
+
null_base_lr=validation_data.null_base_lr,
|
228 |
+
)
|
229 |
+
ddim_inv_latent = ddim_inv_latent.to(weight_dtype)
|
230 |
+
uncond_embeddings = [embed.to(weight_dtype) for embed in uncond_embeddings]
|
231 |
+
else:
|
232 |
+
ddim_inv_latent = ddim_inversion(
|
233 |
+
validation_pipeline, ddim_inv_scheduler, video_latent=latents,
|
234 |
+
num_inv_steps=validation_data.num_inv_steps, prompt="",
|
235 |
+
normal_infer=True, # we don't want to use scatn or denseattn for inversion, just use sd inferenece
|
236 |
+
)[-1].to(weight_dtype)
|
237 |
+
uncond_embeddings = None
|
238 |
+
|
239 |
+
ddim_inv_latent = ddim_inv_latent.repeat(2, 1, 1, 1, 1)
|
240 |
+
|
241 |
+
for idx, prompt in enumerate(validation_data.prompts):
|
242 |
+
prompts = [input_dataset.prompt, prompt] # a list of two prompts
|
243 |
+
cross_replace_steps, self_replace_steps = prepare_control(unet=unet, prompts=prompts, validation_data=validation_data)
|
244 |
+
|
245 |
+
sample = validation_pipeline(prompts, generator=generator, latents=ddim_inv_latent,
|
246 |
+
uncond_embeddings=uncond_embeddings,
|
247 |
+
**validation_data).images
|
248 |
+
|
249 |
+
assert sample.shape[0] == 2
|
250 |
+
sample_inv, sample_gen = sample.chunk(2)
|
251 |
+
# add input for vis
|
252 |
+
save_videos_grid(sample_gen, f"{output_dir}/sample/{prompts[1]}.gif", fps=fps)
|
253 |
+
samples.append(sample_gen)
|
254 |
+
|
255 |
+
samples = torch.concat(samples)
|
256 |
+
save_path = f"{output_dir}/sample-all.gif"
|
257 |
+
save_videos_grid(samples, save_path, fps=fps)
|
258 |
+
logger.info(f"Saved samples to {save_path}")
|
259 |
+
|
260 |
+
|
261 |
+
if __name__ == "__main__":
|
262 |
+
parser = argparse.ArgumentParser()
|
263 |
+
parser.add_argument("--config", type=str, default="./configs/vid2vid_zero.yaml")
|
264 |
+
args = parser.parse_args()
|
265 |
+
|
266 |
+
main(**OmegaConf.load(args.config))
|
vid2vid_zero/data/dataset.py
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import decord
|
2 |
+
decord.bridge.set_bridge('torch')
|
3 |
+
|
4 |
+
from torch.utils.data import Dataset
|
5 |
+
from einops import rearrange
|
6 |
+
|
7 |
+
|
8 |
+
class VideoDataset(Dataset):
|
9 |
+
def __init__(
|
10 |
+
self,
|
11 |
+
video_path: str,
|
12 |
+
prompt: str,
|
13 |
+
width: int = 512,
|
14 |
+
height: int = 512,
|
15 |
+
n_sample_frames: int = 8,
|
16 |
+
sample_start_idx: int = 0,
|
17 |
+
sample_frame_rate: int = 1,
|
18 |
+
):
|
19 |
+
self.video_path = video_path
|
20 |
+
self.prompt = prompt
|
21 |
+
self.prompt_ids = None
|
22 |
+
|
23 |
+
self.width = width
|
24 |
+
self.height = height
|
25 |
+
self.n_sample_frames = n_sample_frames
|
26 |
+
self.sample_start_idx = sample_start_idx
|
27 |
+
self.sample_frame_rate = sample_frame_rate
|
28 |
+
|
29 |
+
def __len__(self):
|
30 |
+
return 1
|
31 |
+
|
32 |
+
def __getitem__(self, index):
|
33 |
+
# load and sample video frames
|
34 |
+
vr = decord.VideoReader(self.video_path, width=self.width, height=self.height)
|
35 |
+
sample_index = list(range(self.sample_start_idx, len(vr), self.sample_frame_rate))[:self.n_sample_frames]
|
36 |
+
video = vr.get_batch(sample_index)
|
37 |
+
video = rearrange(video, "f h w c -> f c h w")
|
38 |
+
|
39 |
+
example = {
|
40 |
+
"pixel_values": (video / 127.5 - 1.0),
|
41 |
+
"prompt_ids": self.prompt_ids
|
42 |
+
}
|
43 |
+
|
44 |
+
return example
|
vid2vid_zero/models/attention_2d.py
ADDED
@@ -0,0 +1,434 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Adapted from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention.py
|
2 |
+
|
3 |
+
from dataclasses import dataclass
|
4 |
+
from typing import Optional
|
5 |
+
|
6 |
+
import torch
|
7 |
+
import torch.nn.functional as F
|
8 |
+
from torch import nn
|
9 |
+
|
10 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
11 |
+
from diffusers.modeling_utils import ModelMixin
|
12 |
+
from diffusers.utils import BaseOutput
|
13 |
+
from diffusers.utils.import_utils import is_xformers_available
|
14 |
+
from diffusers.models.attention import CrossAttention, FeedForward, AdaLayerNorm
|
15 |
+
|
16 |
+
from einops import rearrange, repeat
|
17 |
+
|
18 |
+
|
19 |
+
@dataclass
|
20 |
+
class Transformer2DModelOutput(BaseOutput):
|
21 |
+
sample: torch.FloatTensor
|
22 |
+
|
23 |
+
|
24 |
+
if is_xformers_available():
|
25 |
+
import xformers
|
26 |
+
import xformers.ops
|
27 |
+
else:
|
28 |
+
xformers = None
|
29 |
+
|
30 |
+
|
31 |
+
class Transformer2DModel(ModelMixin, ConfigMixin):
|
32 |
+
@register_to_config
|
33 |
+
def __init__(
|
34 |
+
self,
|
35 |
+
num_attention_heads: int = 16,
|
36 |
+
attention_head_dim: int = 88,
|
37 |
+
in_channels: Optional[int] = None,
|
38 |
+
num_layers: int = 1,
|
39 |
+
dropout: float = 0.0,
|
40 |
+
norm_num_groups: int = 32,
|
41 |
+
cross_attention_dim: Optional[int] = None,
|
42 |
+
attention_bias: bool = False,
|
43 |
+
sample_size: Optional[int] = None,
|
44 |
+
num_vector_embeds: Optional[int] = None,
|
45 |
+
activation_fn: str = "geglu",
|
46 |
+
num_embeds_ada_norm: Optional[int] = None,
|
47 |
+
use_linear_projection: bool = False,
|
48 |
+
only_cross_attention: bool = False,
|
49 |
+
upcast_attention: bool = False,
|
50 |
+
use_sc_attn: bool = False,
|
51 |
+
use_st_attn: bool = False,
|
52 |
+
):
|
53 |
+
super().__init__()
|
54 |
+
self.use_linear_projection = use_linear_projection
|
55 |
+
self.num_attention_heads = num_attention_heads
|
56 |
+
self.attention_head_dim = attention_head_dim
|
57 |
+
inner_dim = num_attention_heads * attention_head_dim
|
58 |
+
|
59 |
+
# 1. Transformer2DModel can process both standard continous images of shape `(batch_size, num_channels, width, height)` as well as quantized image embeddings of shape `(batch_size, num_image_vectors)`
|
60 |
+
# Define whether input is continuous or discrete depending on configuration
|
61 |
+
self.is_input_continuous = in_channels is not None
|
62 |
+
self.is_input_vectorized = num_vector_embeds is not None
|
63 |
+
|
64 |
+
if self.is_input_continuous and self.is_input_vectorized:
|
65 |
+
raise ValueError(
|
66 |
+
f"Cannot define both `in_channels`: {in_channels} and `num_vector_embeds`: {num_vector_embeds}. Make"
|
67 |
+
" sure that either `in_channels` or `num_vector_embeds` is None."
|
68 |
+
)
|
69 |
+
elif not self.is_input_continuous and not self.is_input_vectorized:
|
70 |
+
raise ValueError(
|
71 |
+
f"Has to define either `in_channels`: {in_channels} or `num_vector_embeds`: {num_vector_embeds}. Make"
|
72 |
+
" sure that either `in_channels` or `num_vector_embeds` is not None."
|
73 |
+
)
|
74 |
+
|
75 |
+
# 2. Define input layers
|
76 |
+
if self.is_input_continuous:
|
77 |
+
self.in_channels = in_channels
|
78 |
+
|
79 |
+
self.norm = torch.nn.GroupNorm(num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True)
|
80 |
+
if use_linear_projection:
|
81 |
+
self.proj_in = nn.Linear(in_channels, inner_dim)
|
82 |
+
else:
|
83 |
+
self.proj_in = nn.Conv2d(in_channels, inner_dim, kernel_size=1, stride=1, padding=0)
|
84 |
+
else:
|
85 |
+
raise NotImplementedError
|
86 |
+
|
87 |
+
# Define transformers blocks
|
88 |
+
self.transformer_blocks = nn.ModuleList(
|
89 |
+
[
|
90 |
+
BasicTransformerBlock(
|
91 |
+
inner_dim,
|
92 |
+
num_attention_heads,
|
93 |
+
attention_head_dim,
|
94 |
+
dropout=dropout,
|
95 |
+
cross_attention_dim=cross_attention_dim,
|
96 |
+
activation_fn=activation_fn,
|
97 |
+
num_embeds_ada_norm=num_embeds_ada_norm,
|
98 |
+
attention_bias=attention_bias,
|
99 |
+
only_cross_attention=only_cross_attention,
|
100 |
+
upcast_attention=upcast_attention,
|
101 |
+
use_sc_attn=use_sc_attn,
|
102 |
+
use_st_attn=True if (d == 0 and use_st_attn) else False ,
|
103 |
+
)
|
104 |
+
for d in range(num_layers)
|
105 |
+
]
|
106 |
+
)
|
107 |
+
|
108 |
+
# 4. Define output layers
|
109 |
+
if use_linear_projection:
|
110 |
+
self.proj_out = nn.Linear(in_channels, inner_dim)
|
111 |
+
else:
|
112 |
+
self.proj_out = nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0)
|
113 |
+
|
114 |
+
def forward(self, hidden_states, encoder_hidden_states=None, timestep=None, return_dict: bool = True, normal_infer: bool = False):
|
115 |
+
# Input
|
116 |
+
assert hidden_states.dim() == 5, f"Expected hidden_states to have ndim=5, but got ndim={hidden_states.dim()}."
|
117 |
+
video_length = hidden_states.shape[2]
|
118 |
+
hidden_states = rearrange(hidden_states, "b c f h w -> (b f) c h w")
|
119 |
+
encoder_hidden_states = repeat(encoder_hidden_states, 'b n c -> (b f) n c', f=video_length)
|
120 |
+
|
121 |
+
batch, channel, height, weight = hidden_states.shape
|
122 |
+
residual = hidden_states
|
123 |
+
|
124 |
+
hidden_states = self.norm(hidden_states)
|
125 |
+
if not self.use_linear_projection:
|
126 |
+
hidden_states = self.proj_in(hidden_states)
|
127 |
+
inner_dim = hidden_states.shape[1]
|
128 |
+
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * weight, inner_dim)
|
129 |
+
else:
|
130 |
+
inner_dim = hidden_states.shape[1]
|
131 |
+
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * weight, inner_dim)
|
132 |
+
hidden_states = self.proj_in(hidden_states)
|
133 |
+
|
134 |
+
# Blocks
|
135 |
+
for block in self.transformer_blocks:
|
136 |
+
hidden_states = block(
|
137 |
+
hidden_states,
|
138 |
+
encoder_hidden_states=encoder_hidden_states,
|
139 |
+
timestep=timestep,
|
140 |
+
video_length=video_length,
|
141 |
+
normal_infer=normal_infer,
|
142 |
+
)
|
143 |
+
|
144 |
+
# Output
|
145 |
+
if not self.use_linear_projection:
|
146 |
+
hidden_states = (
|
147 |
+
hidden_states.reshape(batch, height, weight, inner_dim).permute(0, 3, 1, 2).contiguous()
|
148 |
+
)
|
149 |
+
hidden_states = self.proj_out(hidden_states)
|
150 |
+
else:
|
151 |
+
hidden_states = self.proj_out(hidden_states)
|
152 |
+
hidden_states = (
|
153 |
+
hidden_states.reshape(batch, height, weight, inner_dim).permute(0, 3, 1, 2).contiguous()
|
154 |
+
)
|
155 |
+
|
156 |
+
output = hidden_states + residual
|
157 |
+
|
158 |
+
output = rearrange(output, "(b f) c h w -> b c f h w", f=video_length)
|
159 |
+
if not return_dict:
|
160 |
+
return (output,)
|
161 |
+
|
162 |
+
return Transformer2DModelOutput(sample=output)
|
163 |
+
|
164 |
+
|
165 |
+
class BasicTransformerBlock(nn.Module):
|
166 |
+
def __init__(
|
167 |
+
self,
|
168 |
+
dim: int,
|
169 |
+
num_attention_heads: int,
|
170 |
+
attention_head_dim: int,
|
171 |
+
dropout=0.0,
|
172 |
+
cross_attention_dim: Optional[int] = None,
|
173 |
+
activation_fn: str = "geglu",
|
174 |
+
num_embeds_ada_norm: Optional[int] = None,
|
175 |
+
attention_bias: bool = False,
|
176 |
+
only_cross_attention: bool = False,
|
177 |
+
upcast_attention: bool = False,
|
178 |
+
use_sc_attn: bool = False,
|
179 |
+
use_st_attn: bool = False,
|
180 |
+
):
|
181 |
+
super().__init__()
|
182 |
+
self.only_cross_attention = only_cross_attention
|
183 |
+
self.use_ada_layer_norm = num_embeds_ada_norm is not None
|
184 |
+
|
185 |
+
# Attn with temporal modeling
|
186 |
+
self.use_sc_attn = use_sc_attn
|
187 |
+
self.use_st_attn = use_st_attn
|
188 |
+
|
189 |
+
attn_type = SparseCausalAttention if self.use_sc_attn else CrossAttention
|
190 |
+
attn_type = SpatialTemporalAttention if self.use_st_attn else attn_type
|
191 |
+
self.attn1 = attn_type(
|
192 |
+
query_dim=dim,
|
193 |
+
heads=num_attention_heads,
|
194 |
+
dim_head=attention_head_dim,
|
195 |
+
dropout=dropout,
|
196 |
+
bias=attention_bias,
|
197 |
+
cross_attention_dim=cross_attention_dim if only_cross_attention else None,
|
198 |
+
upcast_attention=upcast_attention,
|
199 |
+
) # is a self-attention
|
200 |
+
self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn)
|
201 |
+
|
202 |
+
# Cross-Attn
|
203 |
+
if cross_attention_dim is not None:
|
204 |
+
self.attn2 = CrossAttention(
|
205 |
+
query_dim=dim,
|
206 |
+
cross_attention_dim=cross_attention_dim,
|
207 |
+
heads=num_attention_heads,
|
208 |
+
dim_head=attention_head_dim,
|
209 |
+
dropout=dropout,
|
210 |
+
bias=attention_bias,
|
211 |
+
upcast_attention=upcast_attention,
|
212 |
+
) # is self-attn if encoder_hidden_states is none
|
213 |
+
else:
|
214 |
+
self.attn2 = None
|
215 |
+
|
216 |
+
self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim)
|
217 |
+
|
218 |
+
if cross_attention_dim is not None:
|
219 |
+
self.norm2 = AdaLayerNorm(dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim)
|
220 |
+
else:
|
221 |
+
self.norm2 = None
|
222 |
+
|
223 |
+
# 3. Feed-forward
|
224 |
+
self.norm3 = nn.LayerNorm(dim)
|
225 |
+
|
226 |
+
def set_use_memory_efficient_attention_xformers(self, use_memory_efficient_attention_xformers: bool):
|
227 |
+
if not is_xformers_available():
|
228 |
+
print("Here is how to install it")
|
229 |
+
raise ModuleNotFoundError(
|
230 |
+
"Refer to https://github.com/facebookresearch/xformers for more information on how to install"
|
231 |
+
" xformers",
|
232 |
+
name="xformers",
|
233 |
+
)
|
234 |
+
elif not torch.cuda.is_available():
|
235 |
+
raise ValueError(
|
236 |
+
"torch.cuda.is_available() should be True but is False. xformers' memory efficient attention is only"
|
237 |
+
" available for GPU "
|
238 |
+
)
|
239 |
+
else:
|
240 |
+
try:
|
241 |
+
# Make sure we can run the memory efficient attention
|
242 |
+
_ = xformers.ops.memory_efficient_attention(
|
243 |
+
torch.randn((1, 2, 40), device="cuda"),
|
244 |
+
torch.randn((1, 2, 40), device="cuda"),
|
245 |
+
torch.randn((1, 2, 40), device="cuda"),
|
246 |
+
)
|
247 |
+
except Exception as e:
|
248 |
+
raise e
|
249 |
+
self.attn1._use_memory_efficient_attention_xformers = use_memory_efficient_attention_xformers
|
250 |
+
if self.attn2 is not None:
|
251 |
+
self.attn2._use_memory_efficient_attention_xformers = use_memory_efficient_attention_xformers
|
252 |
+
# self.attn_temp._use_memory_efficient_attention_xformers = use_memory_efficient_attention_xformers
|
253 |
+
|
254 |
+
def forward(self, hidden_states, encoder_hidden_states=None, timestep=None, attention_mask=None, video_length=None, normal_infer=False):
|
255 |
+
# SparseCausal-Attention
|
256 |
+
norm_hidden_states = (
|
257 |
+
self.norm1(hidden_states, timestep) if self.use_ada_layer_norm else self.norm1(hidden_states)
|
258 |
+
)
|
259 |
+
|
260 |
+
if self.only_cross_attention:
|
261 |
+
hidden_states = (
|
262 |
+
self.attn1(norm_hidden_states, encoder_hidden_states, attention_mask=attention_mask) + hidden_states
|
263 |
+
)
|
264 |
+
else:
|
265 |
+
if self.use_sc_attn or self.use_st_attn:
|
266 |
+
hidden_states = self.attn1(
|
267 |
+
norm_hidden_states, attention_mask=attention_mask, video_length=video_length, normal_infer=normal_infer,
|
268 |
+
) + hidden_states
|
269 |
+
else:
|
270 |
+
# shape of hidden_states: (b*f, len, dim)
|
271 |
+
hidden_states = self.attn1(norm_hidden_states, attention_mask=attention_mask) + hidden_states
|
272 |
+
|
273 |
+
if self.attn2 is not None:
|
274 |
+
# Cross-Attention
|
275 |
+
norm_hidden_states = (
|
276 |
+
self.norm2(hidden_states, timestep) if self.use_ada_layer_norm else self.norm2(hidden_states)
|
277 |
+
)
|
278 |
+
hidden_states = (
|
279 |
+
self.attn2(
|
280 |
+
norm_hidden_states, encoder_hidden_states=encoder_hidden_states, attention_mask=attention_mask
|
281 |
+
)
|
282 |
+
+ hidden_states
|
283 |
+
)
|
284 |
+
|
285 |
+
# Feed-forward
|
286 |
+
hidden_states = self.ff(self.norm3(hidden_states)) + hidden_states
|
287 |
+
|
288 |
+
return hidden_states
|
289 |
+
|
290 |
+
|
291 |
+
class SparseCausalAttention(CrossAttention):
|
292 |
+
def forward_sc_attn(self, hidden_states, encoder_hidden_states=None, attention_mask=None, video_length=None):
|
293 |
+
batch_size, sequence_length, _ = hidden_states.shape
|
294 |
+
|
295 |
+
encoder_hidden_states = encoder_hidden_states
|
296 |
+
|
297 |
+
if self.group_norm is not None:
|
298 |
+
hidden_states = self.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
299 |
+
|
300 |
+
query = self.to_q(hidden_states)
|
301 |
+
dim = query.shape[-1]
|
302 |
+
query = self.reshape_heads_to_batch_dim(query)
|
303 |
+
|
304 |
+
if self.added_kv_proj_dim is not None:
|
305 |
+
raise NotImplementedError
|
306 |
+
|
307 |
+
encoder_hidden_states = encoder_hidden_states if encoder_hidden_states is not None else hidden_states
|
308 |
+
key = self.to_k(encoder_hidden_states)
|
309 |
+
value = self.to_v(encoder_hidden_states)
|
310 |
+
|
311 |
+
former_frame_index = torch.arange(video_length) - 1
|
312 |
+
former_frame_index[0] = 0
|
313 |
+
|
314 |
+
key = rearrange(key, "(b f) d c -> b f d c", f=video_length)
|
315 |
+
key = torch.cat([key[:, [0] * video_length], key[:, former_frame_index]], dim=2)
|
316 |
+
key = rearrange(key, "b f d c -> (b f) d c")
|
317 |
+
|
318 |
+
value = rearrange(value, "(b f) d c -> b f d c", f=video_length)
|
319 |
+
value = torch.cat([value[:, [0] * video_length], value[:, former_frame_index]], dim=2)
|
320 |
+
value = rearrange(value, "b f d c -> (b f) d c")
|
321 |
+
|
322 |
+
key = self.reshape_heads_to_batch_dim(key)
|
323 |
+
value = self.reshape_heads_to_batch_dim(value)
|
324 |
+
|
325 |
+
if attention_mask is not None:
|
326 |
+
if attention_mask.shape[-1] != query.shape[1]:
|
327 |
+
target_length = query.shape[1]
|
328 |
+
attention_mask = F.pad(attention_mask, (0, target_length), value=0.0)
|
329 |
+
attention_mask = attention_mask.repeat_interleave(self.heads, dim=0)
|
330 |
+
|
331 |
+
# attention, what we cannot get enough of
|
332 |
+
if self._use_memory_efficient_attention_xformers:
|
333 |
+
hidden_states = self._memory_efficient_attention_xformers(query, key, value, attention_mask)
|
334 |
+
# Some versions of xformers return output in fp32, cast it back to the dtype of the input
|
335 |
+
hidden_states = hidden_states.to(query.dtype)
|
336 |
+
else:
|
337 |
+
if self._slice_size is None or query.shape[0] // self._slice_size == 1:
|
338 |
+
hidden_states = self._attention(query, key, value, attention_mask)
|
339 |
+
else:
|
340 |
+
hidden_states = self._sliced_attention(query, key, value, sequence_length, dim, attention_mask)
|
341 |
+
|
342 |
+
# linear proj
|
343 |
+
hidden_states = self.to_out[0](hidden_states)
|
344 |
+
|
345 |
+
# dropout
|
346 |
+
hidden_states = self.to_out[1](hidden_states)
|
347 |
+
return hidden_states
|
348 |
+
|
349 |
+
def forward(self, hidden_states, encoder_hidden_states=None, attention_mask=None, video_length=None, normal_infer=False):
|
350 |
+
if normal_infer:
|
351 |
+
return super().forward(
|
352 |
+
hidden_states=hidden_states,
|
353 |
+
encoder_hidden_states=encoder_hidden_states,
|
354 |
+
attention_mask=attention_mask,
|
355 |
+
# video_length=video_length,
|
356 |
+
)
|
357 |
+
else:
|
358 |
+
return self.forward_sc_attn(
|
359 |
+
hidden_states=hidden_states,
|
360 |
+
encoder_hidden_states=encoder_hidden_states,
|
361 |
+
attention_mask=attention_mask,
|
362 |
+
video_length=video_length,
|
363 |
+
)
|
364 |
+
|
365 |
+
class SpatialTemporalAttention(CrossAttention):
|
366 |
+
def forward_dense_attn(self, hidden_states, encoder_hidden_states=None, attention_mask=None, video_length=None):
|
367 |
+
batch_size, sequence_length, _ = hidden_states.shape
|
368 |
+
|
369 |
+
encoder_hidden_states = encoder_hidden_states
|
370 |
+
|
371 |
+
if self.group_norm is not None:
|
372 |
+
hidden_states = self.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
373 |
+
|
374 |
+
query = self.to_q(hidden_states)
|
375 |
+
dim = query.shape[-1]
|
376 |
+
query = self.reshape_heads_to_batch_dim(query)
|
377 |
+
|
378 |
+
if self.added_kv_proj_dim is not None:
|
379 |
+
raise NotImplementedError
|
380 |
+
|
381 |
+
encoder_hidden_states = encoder_hidden_states if encoder_hidden_states is not None else hidden_states
|
382 |
+
key = self.to_k(encoder_hidden_states)
|
383 |
+
value = self.to_v(encoder_hidden_states)
|
384 |
+
|
385 |
+
key = rearrange(key, "(b f) n d -> b f n d", f=video_length)
|
386 |
+
key = key.unsqueeze(1).repeat(1, video_length, 1, 1, 1) # (b f f n d)
|
387 |
+
key = rearrange(key, "b f g n d -> (b f) (g n) d")
|
388 |
+
|
389 |
+
value = rearrange(value, "(b f) n d -> b f n d", f=video_length)
|
390 |
+
value = value.unsqueeze(1).repeat(1, video_length, 1, 1, 1) # (b f f n d)
|
391 |
+
value = rearrange(value, "b f g n d -> (b f) (g n) d")
|
392 |
+
|
393 |
+
key = self.reshape_heads_to_batch_dim(key)
|
394 |
+
value = self.reshape_heads_to_batch_dim(value)
|
395 |
+
|
396 |
+
if attention_mask is not None:
|
397 |
+
if attention_mask.shape[-1] != query.shape[1]:
|
398 |
+
target_length = query.shape[1]
|
399 |
+
attention_mask = F.pad(attention_mask, (0, target_length), value=0.0)
|
400 |
+
attention_mask = attention_mask.repeat_interleave(self.heads, dim=0)
|
401 |
+
|
402 |
+
# attention, what we cannot get enough of
|
403 |
+
if self._use_memory_efficient_attention_xformers:
|
404 |
+
hidden_states = self._memory_efficient_attention_xformers(query, key, value, attention_mask)
|
405 |
+
# Some versions of xformers return output in fp32, cast it back to the dtype of the input
|
406 |
+
hidden_states = hidden_states.to(query.dtype)
|
407 |
+
else:
|
408 |
+
if self._slice_size is None or query.shape[0] // self._slice_size == 1:
|
409 |
+
hidden_states = self._attention(query, key, value, attention_mask)
|
410 |
+
else:
|
411 |
+
hidden_states = self._sliced_attention(query, key, value, sequence_length, dim, attention_mask)
|
412 |
+
|
413 |
+
# linear proj
|
414 |
+
hidden_states = self.to_out[0](hidden_states)
|
415 |
+
|
416 |
+
# dropout
|
417 |
+
hidden_states = self.to_out[1](hidden_states)
|
418 |
+
return hidden_states
|
419 |
+
|
420 |
+
def forward(self, hidden_states, encoder_hidden_states=None, attention_mask=None, video_length=None, normal_infer=False):
|
421 |
+
if normal_infer:
|
422 |
+
return super().forward(
|
423 |
+
hidden_states=hidden_states,
|
424 |
+
encoder_hidden_states=encoder_hidden_states,
|
425 |
+
attention_mask=attention_mask,
|
426 |
+
# video_length=video_length,
|
427 |
+
)
|
428 |
+
else:
|
429 |
+
return self.forward_dense_attn(
|
430 |
+
hidden_states=hidden_states,
|
431 |
+
encoder_hidden_states=encoder_hidden_states,
|
432 |
+
attention_mask=attention_mask,
|
433 |
+
video_length=video_length,
|
434 |
+
)
|
vid2vid_zero/models/resnet_2d.py
ADDED
@@ -0,0 +1,209 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Adapted from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/resnet.py
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
import torch.nn.functional as F
|
6 |
+
|
7 |
+
from einops import rearrange
|
8 |
+
|
9 |
+
|
10 |
+
class InflatedConv3d(nn.Conv2d):
|
11 |
+
def forward(self, x):
|
12 |
+
video_length = x.shape[2]
|
13 |
+
|
14 |
+
x = rearrange(x, "b c f h w -> (b f) c h w")
|
15 |
+
x = super().forward(x)
|
16 |
+
x = rearrange(x, "(b f) c h w -> b c f h w", f=video_length)
|
17 |
+
|
18 |
+
return x
|
19 |
+
|
20 |
+
|
21 |
+
class Upsample2D(nn.Module):
|
22 |
+
def __init__(self, channels, use_conv=False, use_conv_transpose=False, out_channels=None, name="conv"):
|
23 |
+
super().__init__()
|
24 |
+
self.channels = channels
|
25 |
+
self.out_channels = out_channels or channels
|
26 |
+
self.use_conv = use_conv
|
27 |
+
self.use_conv_transpose = use_conv_transpose
|
28 |
+
self.name = name
|
29 |
+
|
30 |
+
conv = None
|
31 |
+
if use_conv_transpose:
|
32 |
+
raise NotImplementedError
|
33 |
+
elif use_conv:
|
34 |
+
conv = InflatedConv3d(self.channels, self.out_channels, 3, padding=1)
|
35 |
+
|
36 |
+
if name == "conv":
|
37 |
+
self.conv = conv
|
38 |
+
else:
|
39 |
+
self.Conv2d_0 = conv
|
40 |
+
|
41 |
+
def forward(self, hidden_states, output_size=None):
|
42 |
+
assert hidden_states.shape[1] == self.channels
|
43 |
+
|
44 |
+
if self.use_conv_transpose:
|
45 |
+
raise NotImplementedError
|
46 |
+
|
47 |
+
# Cast to float32 to as 'upsample_nearest2d_out_frame' op does not support bfloat16
|
48 |
+
dtype = hidden_states.dtype
|
49 |
+
if dtype == torch.bfloat16:
|
50 |
+
hidden_states = hidden_states.to(torch.float32)
|
51 |
+
|
52 |
+
# upsample_nearest_nhwc fails with large batch sizes. see https://github.com/huggingface/diffusers/issues/984
|
53 |
+
if hidden_states.shape[0] >= 64:
|
54 |
+
hidden_states = hidden_states.contiguous()
|
55 |
+
|
56 |
+
# if `output_size` is passed we force the interpolation output
|
57 |
+
# size and do not make use of `scale_factor=2`
|
58 |
+
if output_size is None:
|
59 |
+
hidden_states = F.interpolate(hidden_states, scale_factor=[1.0, 2.0, 2.0], mode="nearest")
|
60 |
+
else:
|
61 |
+
hidden_states = F.interpolate(hidden_states, size=output_size, mode="nearest")
|
62 |
+
|
63 |
+
# If the input is bfloat16, we cast back to bfloat16
|
64 |
+
if dtype == torch.bfloat16:
|
65 |
+
hidden_states = hidden_states.to(dtype)
|
66 |
+
|
67 |
+
if self.use_conv:
|
68 |
+
if self.name == "conv":
|
69 |
+
hidden_states = self.conv(hidden_states)
|
70 |
+
else:
|
71 |
+
hidden_states = self.Conv2d_0(hidden_states)
|
72 |
+
|
73 |
+
return hidden_states
|
74 |
+
|
75 |
+
|
76 |
+
class Downsample2D(nn.Module):
|
77 |
+
def __init__(self, channels, use_conv=False, out_channels=None, padding=1, name="conv"):
|
78 |
+
super().__init__()
|
79 |
+
self.channels = channels
|
80 |
+
self.out_channels = out_channels or channels
|
81 |
+
self.use_conv = use_conv
|
82 |
+
self.padding = padding
|
83 |
+
stride = 2
|
84 |
+
self.name = name
|
85 |
+
|
86 |
+
if use_conv:
|
87 |
+
conv = InflatedConv3d(self.channels, self.out_channels, 3, stride=stride, padding=padding)
|
88 |
+
else:
|
89 |
+
raise NotImplementedError
|
90 |
+
|
91 |
+
if name == "conv":
|
92 |
+
self.Conv2d_0 = conv
|
93 |
+
self.conv = conv
|
94 |
+
elif name == "Conv2d_0":
|
95 |
+
self.conv = conv
|
96 |
+
else:
|
97 |
+
self.conv = conv
|
98 |
+
|
99 |
+
def forward(self, hidden_states):
|
100 |
+
assert hidden_states.shape[1] == self.channels
|
101 |
+
if self.use_conv and self.padding == 0:
|
102 |
+
raise NotImplementedError
|
103 |
+
|
104 |
+
assert hidden_states.shape[1] == self.channels
|
105 |
+
hidden_states = self.conv(hidden_states)
|
106 |
+
|
107 |
+
return hidden_states
|
108 |
+
|
109 |
+
|
110 |
+
class ResnetBlock2D(nn.Module):
|
111 |
+
def __init__(
|
112 |
+
self,
|
113 |
+
*,
|
114 |
+
in_channels,
|
115 |
+
out_channels=None,
|
116 |
+
conv_shortcut=False,
|
117 |
+
dropout=0.0,
|
118 |
+
temb_channels=512,
|
119 |
+
groups=32,
|
120 |
+
groups_out=None,
|
121 |
+
pre_norm=True,
|
122 |
+
eps=1e-6,
|
123 |
+
non_linearity="swish",
|
124 |
+
time_embedding_norm="default",
|
125 |
+
output_scale_factor=1.0,
|
126 |
+
use_in_shortcut=None,
|
127 |
+
):
|
128 |
+
super().__init__()
|
129 |
+
self.pre_norm = pre_norm
|
130 |
+
self.pre_norm = True
|
131 |
+
self.in_channels = in_channels
|
132 |
+
out_channels = in_channels if out_channels is None else out_channels
|
133 |
+
self.out_channels = out_channels
|
134 |
+
self.use_conv_shortcut = conv_shortcut
|
135 |
+
self.time_embedding_norm = time_embedding_norm
|
136 |
+
self.output_scale_factor = output_scale_factor
|
137 |
+
|
138 |
+
if groups_out is None:
|
139 |
+
groups_out = groups
|
140 |
+
|
141 |
+
self.norm1 = torch.nn.GroupNorm(num_groups=groups, num_channels=in_channels, eps=eps, affine=True)
|
142 |
+
|
143 |
+
self.conv1 = InflatedConv3d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
|
144 |
+
|
145 |
+
if temb_channels is not None:
|
146 |
+
if self.time_embedding_norm == "default":
|
147 |
+
time_emb_proj_out_channels = out_channels
|
148 |
+
elif self.time_embedding_norm == "scale_shift":
|
149 |
+
time_emb_proj_out_channels = out_channels * 2
|
150 |
+
else:
|
151 |
+
raise ValueError(f"unknown time_embedding_norm : {self.time_embedding_norm} ")
|
152 |
+
|
153 |
+
self.time_emb_proj = torch.nn.Linear(temb_channels, time_emb_proj_out_channels)
|
154 |
+
else:
|
155 |
+
self.time_emb_proj = None
|
156 |
+
|
157 |
+
self.norm2 = torch.nn.GroupNorm(num_groups=groups_out, num_channels=out_channels, eps=eps, affine=True)
|
158 |
+
self.dropout = torch.nn.Dropout(dropout)
|
159 |
+
self.conv2 = InflatedConv3d(out_channels, out_channels, kernel_size=3, stride=1, padding=1)
|
160 |
+
|
161 |
+
if non_linearity == "swish":
|
162 |
+
self.nonlinearity = lambda x: F.silu(x)
|
163 |
+
elif non_linearity == "mish":
|
164 |
+
self.nonlinearity = Mish()
|
165 |
+
elif non_linearity == "silu":
|
166 |
+
self.nonlinearity = nn.SiLU()
|
167 |
+
|
168 |
+
self.use_in_shortcut = self.in_channels != self.out_channels if use_in_shortcut is None else use_in_shortcut
|
169 |
+
|
170 |
+
self.conv_shortcut = None
|
171 |
+
if self.use_in_shortcut:
|
172 |
+
self.conv_shortcut = InflatedConv3d(in_channels, out_channels, kernel_size=1, stride=1, padding=0)
|
173 |
+
|
174 |
+
def forward(self, input_tensor, temb):
|
175 |
+
hidden_states = input_tensor
|
176 |
+
|
177 |
+
hidden_states = self.norm1(hidden_states)
|
178 |
+
hidden_states = self.nonlinearity(hidden_states)
|
179 |
+
|
180 |
+
hidden_states = self.conv1(hidden_states)
|
181 |
+
|
182 |
+
if temb is not None:
|
183 |
+
temb = self.time_emb_proj(self.nonlinearity(temb))[:, :, None, None, None]
|
184 |
+
|
185 |
+
if temb is not None and self.time_embedding_norm == "default":
|
186 |
+
hidden_states = hidden_states + temb
|
187 |
+
|
188 |
+
hidden_states = self.norm2(hidden_states)
|
189 |
+
|
190 |
+
if temb is not None and self.time_embedding_norm == "scale_shift":
|
191 |
+
scale, shift = torch.chunk(temb, 2, dim=1)
|
192 |
+
hidden_states = hidden_states * (1 + scale) + shift
|
193 |
+
|
194 |
+
hidden_states = self.nonlinearity(hidden_states)
|
195 |
+
|
196 |
+
hidden_states = self.dropout(hidden_states)
|
197 |
+
hidden_states = self.conv2(hidden_states)
|
198 |
+
|
199 |
+
if self.conv_shortcut is not None:
|
200 |
+
input_tensor = self.conv_shortcut(input_tensor)
|
201 |
+
|
202 |
+
output_tensor = (input_tensor + hidden_states) / self.output_scale_factor
|
203 |
+
|
204 |
+
return output_tensor
|
205 |
+
|
206 |
+
|
207 |
+
class Mish(torch.nn.Module):
|
208 |
+
def forward(self, hidden_states):
|
209 |
+
return hidden_states * torch.tanh(torch.nn.functional.softplus(hidden_states))
|
vid2vid_zero/models/unet_2d_blocks.py
ADDED
@@ -0,0 +1,609 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Adapted from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/unet_2d_blocks.py
|
2 |
+
|
3 |
+
import torch
|
4 |
+
from torch import nn
|
5 |
+
|
6 |
+
from .attention_2d import Transformer2DModel
|
7 |
+
from .resnet_2d import Downsample2D, ResnetBlock2D, Upsample2D
|
8 |
+
|
9 |
+
|
10 |
+
def get_down_block(
|
11 |
+
down_block_type,
|
12 |
+
num_layers,
|
13 |
+
in_channels,
|
14 |
+
out_channels,
|
15 |
+
temb_channels,
|
16 |
+
add_downsample,
|
17 |
+
resnet_eps,
|
18 |
+
resnet_act_fn,
|
19 |
+
attn_num_head_channels,
|
20 |
+
resnet_groups=None,
|
21 |
+
cross_attention_dim=None,
|
22 |
+
downsample_padding=None,
|
23 |
+
dual_cross_attention=False,
|
24 |
+
use_linear_projection=False,
|
25 |
+
only_cross_attention=False,
|
26 |
+
upcast_attention=False,
|
27 |
+
resnet_time_scale_shift="default",
|
28 |
+
use_sc_attn=False,
|
29 |
+
use_st_attn=False,
|
30 |
+
):
|
31 |
+
down_block_type = down_block_type[7:] if down_block_type.startswith("UNetRes") else down_block_type
|
32 |
+
if down_block_type == "DownBlock2D":
|
33 |
+
return DownBlock2D(
|
34 |
+
num_layers=num_layers,
|
35 |
+
in_channels=in_channels,
|
36 |
+
out_channels=out_channels,
|
37 |
+
temb_channels=temb_channels,
|
38 |
+
add_downsample=add_downsample,
|
39 |
+
resnet_eps=resnet_eps,
|
40 |
+
resnet_act_fn=resnet_act_fn,
|
41 |
+
resnet_groups=resnet_groups,
|
42 |
+
downsample_padding=downsample_padding,
|
43 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
44 |
+
)
|
45 |
+
elif down_block_type == "CrossAttnDownBlock2D":
|
46 |
+
if cross_attention_dim is None:
|
47 |
+
raise ValueError("cross_attention_dim must be specified for CrossAttnDownBlock2D")
|
48 |
+
return CrossAttnDownBlock2D(
|
49 |
+
num_layers=num_layers,
|
50 |
+
in_channels=in_channels,
|
51 |
+
out_channels=out_channels,
|
52 |
+
temb_channels=temb_channels,
|
53 |
+
add_downsample=add_downsample,
|
54 |
+
resnet_eps=resnet_eps,
|
55 |
+
resnet_act_fn=resnet_act_fn,
|
56 |
+
resnet_groups=resnet_groups,
|
57 |
+
downsample_padding=downsample_padding,
|
58 |
+
cross_attention_dim=cross_attention_dim,
|
59 |
+
attn_num_head_channels=attn_num_head_channels,
|
60 |
+
dual_cross_attention=dual_cross_attention,
|
61 |
+
use_linear_projection=use_linear_projection,
|
62 |
+
only_cross_attention=only_cross_attention,
|
63 |
+
upcast_attention=upcast_attention,
|
64 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
65 |
+
use_sc_attn=use_sc_attn,
|
66 |
+
use_st_attn=use_st_attn,
|
67 |
+
)
|
68 |
+
raise ValueError(f"{down_block_type} does not exist.")
|
69 |
+
|
70 |
+
|
71 |
+
def get_up_block(
|
72 |
+
up_block_type,
|
73 |
+
num_layers,
|
74 |
+
in_channels,
|
75 |
+
out_channels,
|
76 |
+
prev_output_channel,
|
77 |
+
temb_channels,
|
78 |
+
add_upsample,
|
79 |
+
resnet_eps,
|
80 |
+
resnet_act_fn,
|
81 |
+
attn_num_head_channels,
|
82 |
+
resnet_groups=None,
|
83 |
+
cross_attention_dim=None,
|
84 |
+
dual_cross_attention=False,
|
85 |
+
use_linear_projection=False,
|
86 |
+
only_cross_attention=False,
|
87 |
+
upcast_attention=False,
|
88 |
+
resnet_time_scale_shift="default",
|
89 |
+
use_sc_attn=False,
|
90 |
+
use_st_attn=False,
|
91 |
+
):
|
92 |
+
up_block_type = up_block_type[7:] if up_block_type.startswith("UNetRes") else up_block_type
|
93 |
+
if up_block_type == "UpBlock2D":
|
94 |
+
return UpBlock2D(
|
95 |
+
num_layers=num_layers,
|
96 |
+
in_channels=in_channels,
|
97 |
+
out_channels=out_channels,
|
98 |
+
prev_output_channel=prev_output_channel,
|
99 |
+
temb_channels=temb_channels,
|
100 |
+
add_upsample=add_upsample,
|
101 |
+
resnet_eps=resnet_eps,
|
102 |
+
resnet_act_fn=resnet_act_fn,
|
103 |
+
resnet_groups=resnet_groups,
|
104 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
105 |
+
)
|
106 |
+
elif up_block_type == "CrossAttnUpBlock2D":
|
107 |
+
if cross_attention_dim is None:
|
108 |
+
raise ValueError("cross_attention_dim must be specified for CrossAttnUpBlock2D")
|
109 |
+
return CrossAttnUpBlock2D(
|
110 |
+
num_layers=num_layers,
|
111 |
+
in_channels=in_channels,
|
112 |
+
out_channels=out_channels,
|
113 |
+
prev_output_channel=prev_output_channel,
|
114 |
+
temb_channels=temb_channels,
|
115 |
+
add_upsample=add_upsample,
|
116 |
+
resnet_eps=resnet_eps,
|
117 |
+
resnet_act_fn=resnet_act_fn,
|
118 |
+
resnet_groups=resnet_groups,
|
119 |
+
cross_attention_dim=cross_attention_dim,
|
120 |
+
attn_num_head_channels=attn_num_head_channels,
|
121 |
+
dual_cross_attention=dual_cross_attention,
|
122 |
+
use_linear_projection=use_linear_projection,
|
123 |
+
only_cross_attention=only_cross_attention,
|
124 |
+
upcast_attention=upcast_attention,
|
125 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
126 |
+
use_sc_attn=use_sc_attn,
|
127 |
+
use_st_attn=use_st_attn,
|
128 |
+
)
|
129 |
+
raise ValueError(f"{up_block_type} does not exist.")
|
130 |
+
|
131 |
+
|
132 |
+
class UNetMidBlock2DCrossAttn(nn.Module):
|
133 |
+
def __init__(
|
134 |
+
self,
|
135 |
+
in_channels: int,
|
136 |
+
temb_channels: int,
|
137 |
+
dropout: float = 0.0,
|
138 |
+
num_layers: int = 1,
|
139 |
+
resnet_eps: float = 1e-6,
|
140 |
+
resnet_time_scale_shift: str = "default",
|
141 |
+
resnet_act_fn: str = "swish",
|
142 |
+
resnet_groups: int = 32,
|
143 |
+
resnet_pre_norm: bool = True,
|
144 |
+
attn_num_head_channels=1,
|
145 |
+
output_scale_factor=1.0,
|
146 |
+
cross_attention_dim=1280,
|
147 |
+
dual_cross_attention=False,
|
148 |
+
use_linear_projection=False,
|
149 |
+
upcast_attention=False,
|
150 |
+
use_sc_attn=False,
|
151 |
+
use_st_attn=False,
|
152 |
+
):
|
153 |
+
super().__init__()
|
154 |
+
|
155 |
+
self.has_cross_attention = True
|
156 |
+
self.attn_num_head_channels = attn_num_head_channels
|
157 |
+
resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)
|
158 |
+
|
159 |
+
# there is always at least one resnet
|
160 |
+
resnets = [
|
161 |
+
ResnetBlock2D(
|
162 |
+
in_channels=in_channels,
|
163 |
+
out_channels=in_channels,
|
164 |
+
temb_channels=temb_channels,
|
165 |
+
eps=resnet_eps,
|
166 |
+
groups=resnet_groups,
|
167 |
+
dropout=dropout,
|
168 |
+
time_embedding_norm=resnet_time_scale_shift,
|
169 |
+
non_linearity=resnet_act_fn,
|
170 |
+
output_scale_factor=output_scale_factor,
|
171 |
+
pre_norm=resnet_pre_norm,
|
172 |
+
)
|
173 |
+
]
|
174 |
+
attentions = []
|
175 |
+
|
176 |
+
for _ in range(num_layers):
|
177 |
+
if dual_cross_attention:
|
178 |
+
raise NotImplementedError
|
179 |
+
attentions.append(
|
180 |
+
Transformer2DModel(
|
181 |
+
attn_num_head_channels,
|
182 |
+
in_channels // attn_num_head_channels,
|
183 |
+
in_channels=in_channels,
|
184 |
+
num_layers=1,
|
185 |
+
cross_attention_dim=cross_attention_dim,
|
186 |
+
norm_num_groups=resnet_groups,
|
187 |
+
use_linear_projection=use_linear_projection,
|
188 |
+
upcast_attention=upcast_attention,
|
189 |
+
use_sc_attn=use_sc_attn,
|
190 |
+
use_st_attn=True if (use_st_attn and _ == 0) else False,
|
191 |
+
)
|
192 |
+
)
|
193 |
+
resnets.append(
|
194 |
+
ResnetBlock2D(
|
195 |
+
in_channels=in_channels,
|
196 |
+
out_channels=in_channels,
|
197 |
+
temb_channels=temb_channels,
|
198 |
+
eps=resnet_eps,
|
199 |
+
groups=resnet_groups,
|
200 |
+
dropout=dropout,
|
201 |
+
time_embedding_norm=resnet_time_scale_shift,
|
202 |
+
non_linearity=resnet_act_fn,
|
203 |
+
output_scale_factor=output_scale_factor,
|
204 |
+
pre_norm=resnet_pre_norm,
|
205 |
+
)
|
206 |
+
)
|
207 |
+
|
208 |
+
self.attentions = nn.ModuleList(attentions)
|
209 |
+
self.resnets = nn.ModuleList(resnets)
|
210 |
+
|
211 |
+
def forward(self, hidden_states, temb=None, encoder_hidden_states=None, attention_mask=None, normal_infer=False):
|
212 |
+
hidden_states = self.resnets[0](hidden_states, temb)
|
213 |
+
for attn, resnet in zip(self.attentions, self.resnets[1:]):
|
214 |
+
hidden_states = attn(hidden_states, encoder_hidden_states=encoder_hidden_states, normal_infer=normal_infer).sample
|
215 |
+
hidden_states = resnet(hidden_states, temb)
|
216 |
+
|
217 |
+
return hidden_states
|
218 |
+
|
219 |
+
|
220 |
+
class CrossAttnDownBlock2D(nn.Module):
|
221 |
+
def __init__(
|
222 |
+
self,
|
223 |
+
in_channels: int,
|
224 |
+
out_channels: int,
|
225 |
+
temb_channels: int,
|
226 |
+
dropout: float = 0.0,
|
227 |
+
num_layers: int = 1,
|
228 |
+
resnet_eps: float = 1e-6,
|
229 |
+
resnet_time_scale_shift: str = "default",
|
230 |
+
resnet_act_fn: str = "swish",
|
231 |
+
resnet_groups: int = 32,
|
232 |
+
resnet_pre_norm: bool = True,
|
233 |
+
attn_num_head_channels=1,
|
234 |
+
cross_attention_dim=1280,
|
235 |
+
output_scale_factor=1.0,
|
236 |
+
downsample_padding=1,
|
237 |
+
add_downsample=True,
|
238 |
+
dual_cross_attention=False,
|
239 |
+
use_linear_projection=False,
|
240 |
+
only_cross_attention=False,
|
241 |
+
upcast_attention=False,
|
242 |
+
use_sc_attn=False,
|
243 |
+
use_st_attn=False,
|
244 |
+
):
|
245 |
+
super().__init__()
|
246 |
+
resnets = []
|
247 |
+
attentions = []
|
248 |
+
|
249 |
+
self.has_cross_attention = True
|
250 |
+
self.attn_num_head_channels = attn_num_head_channels
|
251 |
+
|
252 |
+
for i in range(num_layers):
|
253 |
+
in_channels = in_channels if i == 0 else out_channels
|
254 |
+
resnets.append(
|
255 |
+
ResnetBlock2D(
|
256 |
+
in_channels=in_channels,
|
257 |
+
out_channels=out_channels,
|
258 |
+
temb_channels=temb_channels,
|
259 |
+
eps=resnet_eps,
|
260 |
+
groups=resnet_groups,
|
261 |
+
dropout=dropout,
|
262 |
+
time_embedding_norm=resnet_time_scale_shift,
|
263 |
+
non_linearity=resnet_act_fn,
|
264 |
+
output_scale_factor=output_scale_factor,
|
265 |
+
pre_norm=resnet_pre_norm,
|
266 |
+
)
|
267 |
+
)
|
268 |
+
if dual_cross_attention:
|
269 |
+
raise NotImplementedError
|
270 |
+
attentions.append(
|
271 |
+
Transformer2DModel(
|
272 |
+
attn_num_head_channels,
|
273 |
+
out_channels // attn_num_head_channels,
|
274 |
+
in_channels=out_channels,
|
275 |
+
num_layers=1,
|
276 |
+
cross_attention_dim=cross_attention_dim,
|
277 |
+
norm_num_groups=resnet_groups,
|
278 |
+
use_linear_projection=use_linear_projection,
|
279 |
+
only_cross_attention=only_cross_attention,
|
280 |
+
upcast_attention=upcast_attention,
|
281 |
+
use_sc_attn=use_sc_attn,
|
282 |
+
use_st_attn=True if (use_st_attn and i == 0) else False,
|
283 |
+
)
|
284 |
+
)
|
285 |
+
self.attentions = nn.ModuleList(attentions)
|
286 |
+
self.resnets = nn.ModuleList(resnets)
|
287 |
+
|
288 |
+
if add_downsample:
|
289 |
+
self.downsamplers = nn.ModuleList(
|
290 |
+
[
|
291 |
+
Downsample2D(
|
292 |
+
out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
|
293 |
+
)
|
294 |
+
]
|
295 |
+
)
|
296 |
+
else:
|
297 |
+
self.downsamplers = None
|
298 |
+
|
299 |
+
self.gradient_checkpointing = False
|
300 |
+
|
301 |
+
def forward(self, hidden_states, temb=None, encoder_hidden_states=None, attention_mask=None, normal_infer=False):
|
302 |
+
output_states = ()
|
303 |
+
|
304 |
+
for resnet, attn in zip(self.resnets, self.attentions):
|
305 |
+
if self.training and self.gradient_checkpointing:
|
306 |
+
|
307 |
+
def create_custom_forward(module, return_dict=None, normal_infer=False):
|
308 |
+
def custom_forward(*inputs):
|
309 |
+
if return_dict is not None:
|
310 |
+
return module(*inputs, return_dict=return_dict, normal_infer=normal_infer)
|
311 |
+
else:
|
312 |
+
return module(*inputs)
|
313 |
+
|
314 |
+
return custom_forward
|
315 |
+
|
316 |
+
hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb)
|
317 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
318 |
+
create_custom_forward(attn, return_dict=False, normal_infer=normal_infer),
|
319 |
+
hidden_states,
|
320 |
+
encoder_hidden_states,
|
321 |
+
)[0]
|
322 |
+
else:
|
323 |
+
hidden_states = resnet(hidden_states, temb)
|
324 |
+
hidden_states = attn(hidden_states, encoder_hidden_states=encoder_hidden_states, normal_infer=normal_infer).sample
|
325 |
+
|
326 |
+
output_states += (hidden_states,)
|
327 |
+
|
328 |
+
if self.downsamplers is not None:
|
329 |
+
for downsampler in self.downsamplers:
|
330 |
+
hidden_states = downsampler(hidden_states)
|
331 |
+
|
332 |
+
output_states += (hidden_states,)
|
333 |
+
|
334 |
+
return hidden_states, output_states
|
335 |
+
|
336 |
+
|
337 |
+
class DownBlock2D(nn.Module):
|
338 |
+
def __init__(
|
339 |
+
self,
|
340 |
+
in_channels: int,
|
341 |
+
out_channels: int,
|
342 |
+
temb_channels: int,
|
343 |
+
dropout: float = 0.0,
|
344 |
+
num_layers: int = 1,
|
345 |
+
resnet_eps: float = 1e-6,
|
346 |
+
resnet_time_scale_shift: str = "default",
|
347 |
+
resnet_act_fn: str = "swish",
|
348 |
+
resnet_groups: int = 32,
|
349 |
+
resnet_pre_norm: bool = True,
|
350 |
+
output_scale_factor=1.0,
|
351 |
+
add_downsample=True,
|
352 |
+
downsample_padding=1,
|
353 |
+
):
|
354 |
+
super().__init__()
|
355 |
+
resnets = []
|
356 |
+
|
357 |
+
for i in range(num_layers):
|
358 |
+
in_channels = in_channels if i == 0 else out_channels
|
359 |
+
resnets.append(
|
360 |
+
ResnetBlock2D(
|
361 |
+
in_channels=in_channels,
|
362 |
+
out_channels=out_channels,
|
363 |
+
temb_channels=temb_channels,
|
364 |
+
eps=resnet_eps,
|
365 |
+
groups=resnet_groups,
|
366 |
+
dropout=dropout,
|
367 |
+
time_embedding_norm=resnet_time_scale_shift,
|
368 |
+
non_linearity=resnet_act_fn,
|
369 |
+
output_scale_factor=output_scale_factor,
|
370 |
+
pre_norm=resnet_pre_norm,
|
371 |
+
)
|
372 |
+
)
|
373 |
+
|
374 |
+
self.resnets = nn.ModuleList(resnets)
|
375 |
+
|
376 |
+
if add_downsample:
|
377 |
+
self.downsamplers = nn.ModuleList(
|
378 |
+
[
|
379 |
+
Downsample2D(
|
380 |
+
out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
|
381 |
+
)
|
382 |
+
]
|
383 |
+
)
|
384 |
+
else:
|
385 |
+
self.downsamplers = None
|
386 |
+
|
387 |
+
self.gradient_checkpointing = False
|
388 |
+
|
389 |
+
def forward(self, hidden_states, temb=None):
|
390 |
+
output_states = ()
|
391 |
+
|
392 |
+
for resnet in self.resnets:
|
393 |
+
if self.training and self.gradient_checkpointing:
|
394 |
+
|
395 |
+
def create_custom_forward(module):
|
396 |
+
def custom_forward(*inputs):
|
397 |
+
return module(*inputs)
|
398 |
+
|
399 |
+
return custom_forward
|
400 |
+
|
401 |
+
hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb)
|
402 |
+
else:
|
403 |
+
hidden_states = resnet(hidden_states, temb)
|
404 |
+
|
405 |
+
output_states += (hidden_states,)
|
406 |
+
|
407 |
+
if self.downsamplers is not None:
|
408 |
+
for downsampler in self.downsamplers:
|
409 |
+
hidden_states = downsampler(hidden_states)
|
410 |
+
|
411 |
+
output_states += (hidden_states,)
|
412 |
+
|
413 |
+
return hidden_states, output_states
|
414 |
+
|
415 |
+
|
416 |
+
class CrossAttnUpBlock2D(nn.Module):
|
417 |
+
def __init__(
|
418 |
+
self,
|
419 |
+
in_channels: int,
|
420 |
+
out_channels: int,
|
421 |
+
prev_output_channel: int,
|
422 |
+
temb_channels: int,
|
423 |
+
dropout: float = 0.0,
|
424 |
+
num_layers: int = 1,
|
425 |
+
resnet_eps: float = 1e-6,
|
426 |
+
resnet_time_scale_shift: str = "default",
|
427 |
+
resnet_act_fn: str = "swish",
|
428 |
+
resnet_groups: int = 32,
|
429 |
+
resnet_pre_norm: bool = True,
|
430 |
+
attn_num_head_channels=1,
|
431 |
+
cross_attention_dim=1280,
|
432 |
+
output_scale_factor=1.0,
|
433 |
+
add_upsample=True,
|
434 |
+
dual_cross_attention=False,
|
435 |
+
use_linear_projection=False,
|
436 |
+
only_cross_attention=False,
|
437 |
+
upcast_attention=False,
|
438 |
+
use_sc_attn=False,
|
439 |
+
use_st_attn=False,
|
440 |
+
):
|
441 |
+
super().__init__()
|
442 |
+
resnets = []
|
443 |
+
attentions = []
|
444 |
+
|
445 |
+
self.has_cross_attention = True
|
446 |
+
self.attn_num_head_channels = attn_num_head_channels
|
447 |
+
|
448 |
+
for i in range(num_layers):
|
449 |
+
res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
|
450 |
+
resnet_in_channels = prev_output_channel if i == 0 else out_channels
|
451 |
+
|
452 |
+
resnets.append(
|
453 |
+
ResnetBlock2D(
|
454 |
+
in_channels=resnet_in_channels + res_skip_channels,
|
455 |
+
out_channels=out_channels,
|
456 |
+
temb_channels=temb_channels,
|
457 |
+
eps=resnet_eps,
|
458 |
+
groups=resnet_groups,
|
459 |
+
dropout=dropout,
|
460 |
+
time_embedding_norm=resnet_time_scale_shift,
|
461 |
+
non_linearity=resnet_act_fn,
|
462 |
+
output_scale_factor=output_scale_factor,
|
463 |
+
pre_norm=resnet_pre_norm,
|
464 |
+
)
|
465 |
+
)
|
466 |
+
if dual_cross_attention:
|
467 |
+
raise NotImplementedError
|
468 |
+
attentions.append(
|
469 |
+
Transformer2DModel(
|
470 |
+
attn_num_head_channels,
|
471 |
+
out_channels // attn_num_head_channels,
|
472 |
+
in_channels=out_channels,
|
473 |
+
num_layers=1,
|
474 |
+
cross_attention_dim=cross_attention_dim,
|
475 |
+
norm_num_groups=resnet_groups,
|
476 |
+
use_linear_projection=use_linear_projection,
|
477 |
+
only_cross_attention=only_cross_attention,
|
478 |
+
upcast_attention=upcast_attention,
|
479 |
+
use_sc_attn=use_sc_attn,
|
480 |
+
use_st_attn=True if (use_st_attn and i == 0) else False,
|
481 |
+
)
|
482 |
+
)
|
483 |
+
|
484 |
+
self.attentions = nn.ModuleList(attentions)
|
485 |
+
self.resnets = nn.ModuleList(resnets)
|
486 |
+
|
487 |
+
if add_upsample:
|
488 |
+
self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
|
489 |
+
else:
|
490 |
+
self.upsamplers = None
|
491 |
+
|
492 |
+
self.gradient_checkpointing = False
|
493 |
+
|
494 |
+
def forward(
|
495 |
+
self,
|
496 |
+
hidden_states,
|
497 |
+
res_hidden_states_tuple,
|
498 |
+
temb=None,
|
499 |
+
encoder_hidden_states=None,
|
500 |
+
upsample_size=None,
|
501 |
+
attention_mask=None,
|
502 |
+
normal_infer=False,
|
503 |
+
):
|
504 |
+
for resnet, attn in zip(self.resnets, self.attentions):
|
505 |
+
# pop res hidden states
|
506 |
+
res_hidden_states = res_hidden_states_tuple[-1]
|
507 |
+
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
|
508 |
+
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
|
509 |
+
|
510 |
+
if self.training and self.gradient_checkpointing:
|
511 |
+
|
512 |
+
def create_custom_forward(module, return_dict=None, normal_infer=False):
|
513 |
+
def custom_forward(*inputs):
|
514 |
+
if return_dict is not None:
|
515 |
+
return module(*inputs, return_dict=return_dict, normal_infer=normal_infer)
|
516 |
+
else:
|
517 |
+
return module(*inputs)
|
518 |
+
|
519 |
+
return custom_forward
|
520 |
+
|
521 |
+
hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb)
|
522 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
523 |
+
create_custom_forward(attn, return_dict=False, normal_infer=normal_infer),
|
524 |
+
hidden_states,
|
525 |
+
encoder_hidden_states,
|
526 |
+
)[0]
|
527 |
+
else:
|
528 |
+
hidden_states = resnet(hidden_states, temb)
|
529 |
+
hidden_states = attn(hidden_states, encoder_hidden_states=encoder_hidden_states, normal_infer=normal_infer).sample
|
530 |
+
|
531 |
+
if self.upsamplers is not None:
|
532 |
+
for upsampler in self.upsamplers:
|
533 |
+
hidden_states = upsampler(hidden_states, upsample_size)
|
534 |
+
|
535 |
+
return hidden_states
|
536 |
+
|
537 |
+
|
538 |
+
class UpBlock2D(nn.Module):
|
539 |
+
def __init__(
|
540 |
+
self,
|
541 |
+
in_channels: int,
|
542 |
+
prev_output_channel: int,
|
543 |
+
out_channels: int,
|
544 |
+
temb_channels: int,
|
545 |
+
dropout: float = 0.0,
|
546 |
+
num_layers: int = 1,
|
547 |
+
resnet_eps: float = 1e-6,
|
548 |
+
resnet_time_scale_shift: str = "default",
|
549 |
+
resnet_act_fn: str = "swish",
|
550 |
+
resnet_groups: int = 32,
|
551 |
+
resnet_pre_norm: bool = True,
|
552 |
+
output_scale_factor=1.0,
|
553 |
+
add_upsample=True,
|
554 |
+
):
|
555 |
+
super().__init__()
|
556 |
+
resnets = []
|
557 |
+
|
558 |
+
for i in range(num_layers):
|
559 |
+
res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
|
560 |
+
resnet_in_channels = prev_output_channel if i == 0 else out_channels
|
561 |
+
|
562 |
+
resnets.append(
|
563 |
+
ResnetBlock2D(
|
564 |
+
in_channels=resnet_in_channels + res_skip_channels,
|
565 |
+
out_channels=out_channels,
|
566 |
+
temb_channels=temb_channels,
|
567 |
+
eps=resnet_eps,
|
568 |
+
groups=resnet_groups,
|
569 |
+
dropout=dropout,
|
570 |
+
time_embedding_norm=resnet_time_scale_shift,
|
571 |
+
non_linearity=resnet_act_fn,
|
572 |
+
output_scale_factor=output_scale_factor,
|
573 |
+
pre_norm=resnet_pre_norm,
|
574 |
+
)
|
575 |
+
)
|
576 |
+
|
577 |
+
self.resnets = nn.ModuleList(resnets)
|
578 |
+
|
579 |
+
if add_upsample:
|
580 |
+
self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
|
581 |
+
else:
|
582 |
+
self.upsamplers = None
|
583 |
+
|
584 |
+
self.gradient_checkpointing = False
|
585 |
+
|
586 |
+
def forward(self, hidden_states, res_hidden_states_tuple, temb=None, upsample_size=None):
|
587 |
+
for resnet in self.resnets:
|
588 |
+
# pop res hidden states
|
589 |
+
res_hidden_states = res_hidden_states_tuple[-1]
|
590 |
+
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
|
591 |
+
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
|
592 |
+
|
593 |
+
if self.training and self.gradient_checkpointing:
|
594 |
+
|
595 |
+
def create_custom_forward(module):
|
596 |
+
def custom_forward(*inputs):
|
597 |
+
return module(*inputs)
|
598 |
+
|
599 |
+
return custom_forward
|
600 |
+
|
601 |
+
hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb)
|
602 |
+
else:
|
603 |
+
hidden_states = resnet(hidden_states, temb)
|
604 |
+
|
605 |
+
if self.upsamplers is not None:
|
606 |
+
for upsampler in self.upsamplers:
|
607 |
+
hidden_states = upsampler(hidden_states, upsample_size)
|
608 |
+
|
609 |
+
return hidden_states
|
vid2vid_zero/models/unet_2d_condition.py
ADDED
@@ -0,0 +1,712 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Adapted from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/unet_2d_condition.py
|
2 |
+
|
3 |
+
import os, json
|
4 |
+
from dataclasses import dataclass
|
5 |
+
from typing import List, Optional, Tuple, Union
|
6 |
+
|
7 |
+
import torch
|
8 |
+
import torch.nn as nn
|
9 |
+
import torch.utils.checkpoint
|
10 |
+
|
11 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
12 |
+
from diffusers.modeling_utils import ModelMixin
|
13 |
+
from diffusers.utils import BaseOutput, logging
|
14 |
+
from diffusers.models.embeddings import TimestepEmbedding, Timesteps
|
15 |
+
from .unet_2d_blocks import (
|
16 |
+
CrossAttnDownBlock2D,
|
17 |
+
CrossAttnUpBlock2D,
|
18 |
+
DownBlock2D,
|
19 |
+
UNetMidBlock2DCrossAttn,
|
20 |
+
# UNetMidBlock2DSimpleCrossAttn,
|
21 |
+
UpBlock2D,
|
22 |
+
get_down_block,
|
23 |
+
get_up_block,
|
24 |
+
)
|
25 |
+
from .resnet_2d import InflatedConv3d
|
26 |
+
|
27 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
28 |
+
|
29 |
+
|
30 |
+
@dataclass
|
31 |
+
class UNet2DConditionOutput(BaseOutput):
|
32 |
+
"""
|
33 |
+
Args:
|
34 |
+
sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
|
35 |
+
Hidden states conditioned on `encoder_hidden_states` input. Output of last layer of model.
|
36 |
+
"""
|
37 |
+
|
38 |
+
sample: torch.FloatTensor
|
39 |
+
|
40 |
+
|
41 |
+
class UNet2DConditionModel(ModelMixin, ConfigMixin):
|
42 |
+
r"""
|
43 |
+
UNet2DConditionModel is a conditional 2D UNet model that takes in a noisy sample, conditional state, and a timestep
|
44 |
+
and returns sample shaped output.
|
45 |
+
|
46 |
+
This model inherits from [`ModelMixin`]. Check the superclass documentation for the generic methods the library
|
47 |
+
implements for all the models (such as downloading or saving, etc.)
|
48 |
+
|
49 |
+
Parameters:
|
50 |
+
sample_size (`int` or `Tuple[int, int]`, *optional*, defaults to `None`):
|
51 |
+
Height and width of input/output sample.
|
52 |
+
in_channels (`int`, *optional*, defaults to 4): The number of channels in the input sample.
|
53 |
+
out_channels (`int`, *optional*, defaults to 4): The number of channels in the output.
|
54 |
+
center_input_sample (`bool`, *optional*, defaults to `False`): Whether to center the input sample.
|
55 |
+
flip_sin_to_cos (`bool`, *optional*, defaults to `False`):
|
56 |
+
Whether to flip the sin to cos in the time embedding.
|
57 |
+
freq_shift (`int`, *optional*, defaults to 0): The frequency shift to apply to the time embedding.
|
58 |
+
down_block_types (`Tuple[str]`, *optional*, defaults to `("CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D")`):
|
59 |
+
The tuple of downsample blocks to use.
|
60 |
+
mid_block_type (`str`, *optional*, defaults to `"UNetMidBlock2DCrossAttn"`):
|
61 |
+
The mid block type. Choose from `UNetMidBlock2DCrossAttn` or `UNetMidBlock2DSimpleCrossAttn`.
|
62 |
+
up_block_types (`Tuple[str]`, *optional*, defaults to `("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D",)`):
|
63 |
+
The tuple of upsample blocks to use.
|
64 |
+
block_out_channels (`Tuple[int]`, *optional*, defaults to `(320, 640, 1280, 1280)`):
|
65 |
+
The tuple of output channels for each block.
|
66 |
+
layers_per_block (`int`, *optional*, defaults to 2): The number of layers per block.
|
67 |
+
downsample_padding (`int`, *optional*, defaults to 1): The padding to use for the downsampling convolution.
|
68 |
+
mid_block_scale_factor (`float`, *optional*, defaults to 1.0): The scale factor to use for the mid block.
|
69 |
+
act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use.
|
70 |
+
norm_num_groups (`int`, *optional*, defaults to 32): The number of groups to use for the normalization.
|
71 |
+
norm_eps (`float`, *optional*, defaults to 1e-5): The epsilon to use for the normalization.
|
72 |
+
cross_attention_dim (`int`, *optional*, defaults to 1280): The dimension of the cross attention features.
|
73 |
+
attention_head_dim (`int`, *optional*, defaults to 8): The dimension of the attention heads.
|
74 |
+
resnet_time_scale_shift (`str`, *optional*, defaults to `"default"`): Time scale shift config
|
75 |
+
for resnet blocks, see [`~models.resnet.ResnetBlock2D`]. Choose from `default` or `scale_shift`.
|
76 |
+
class_embed_type (`str`, *optional*, defaults to None): The type of class embedding to use which is ultimately
|
77 |
+
summed with the time embeddings. Choose from `None`, `"timestep"`, or `"identity"`.
|
78 |
+
"""
|
79 |
+
|
80 |
+
_supports_gradient_checkpointing = True
|
81 |
+
|
82 |
+
@register_to_config
|
83 |
+
def __init__(
|
84 |
+
self,
|
85 |
+
sample_size: Optional[int] = None,
|
86 |
+
in_channels: int = 4,
|
87 |
+
out_channels: int = 4,
|
88 |
+
center_input_sample: bool = False,
|
89 |
+
flip_sin_to_cos: bool = True,
|
90 |
+
freq_shift: int = 0,
|
91 |
+
down_block_types: Tuple[str] = (
|
92 |
+
"CrossAttnDownBlock2D",
|
93 |
+
"CrossAttnDownBlock2D",
|
94 |
+
"CrossAttnDownBlock2D",
|
95 |
+
"DownBlock2D",
|
96 |
+
),
|
97 |
+
mid_block_type: str = "UNetMidBlock2DCrossAttn",
|
98 |
+
up_block_types: Tuple[str] = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D"),
|
99 |
+
only_cross_attention: Union[bool, Tuple[bool]] = False,
|
100 |
+
block_out_channels: Tuple[int] = (320, 640, 1280, 1280),
|
101 |
+
layers_per_block: int = 2,
|
102 |
+
downsample_padding: int = 1,
|
103 |
+
mid_block_scale_factor: float = 1,
|
104 |
+
act_fn: str = "silu",
|
105 |
+
norm_num_groups: int = 32,
|
106 |
+
norm_eps: float = 1e-5,
|
107 |
+
cross_attention_dim: int = 1280,
|
108 |
+
attention_head_dim: Union[int, Tuple[int]] = 8,
|
109 |
+
dual_cross_attention: bool = False,
|
110 |
+
use_linear_projection: bool = False,
|
111 |
+
class_embed_type: Optional[str] = None,
|
112 |
+
num_class_embeds: Optional[int] = None,
|
113 |
+
upcast_attention: bool = False,
|
114 |
+
resnet_time_scale_shift: str = "default",
|
115 |
+
use_sc_attn: bool = False,
|
116 |
+
use_st_attn: bool = False,
|
117 |
+
st_attn_idx: int = None,
|
118 |
+
):
|
119 |
+
super().__init__()
|
120 |
+
|
121 |
+
self.sample_size = sample_size
|
122 |
+
time_embed_dim = block_out_channels[0] * 4
|
123 |
+
|
124 |
+
# input
|
125 |
+
self.conv_in = InflatedConv3d(in_channels, block_out_channels[0], kernel_size=3, padding=(1, 1))
|
126 |
+
|
127 |
+
# time
|
128 |
+
self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift)
|
129 |
+
timestep_input_dim = block_out_channels[0]
|
130 |
+
|
131 |
+
self.time_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim)
|
132 |
+
|
133 |
+
# class embedding
|
134 |
+
if class_embed_type is None and num_class_embeds is not None:
|
135 |
+
self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim)
|
136 |
+
elif class_embed_type == "timestep":
|
137 |
+
self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim)
|
138 |
+
elif class_embed_type == "identity":
|
139 |
+
self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim)
|
140 |
+
else:
|
141 |
+
self.class_embedding = None
|
142 |
+
|
143 |
+
self.down_blocks = nn.ModuleList([])
|
144 |
+
self.mid_block = None
|
145 |
+
self.up_blocks = nn.ModuleList([])
|
146 |
+
|
147 |
+
if isinstance(only_cross_attention, bool):
|
148 |
+
only_cross_attention = [only_cross_attention] * len(down_block_types)
|
149 |
+
|
150 |
+
if isinstance(attention_head_dim, int):
|
151 |
+
attention_head_dim = (attention_head_dim,) * len(down_block_types)
|
152 |
+
|
153 |
+
# down
|
154 |
+
output_channel = block_out_channels[0]
|
155 |
+
for i, down_block_type in enumerate(down_block_types):
|
156 |
+
input_channel = output_channel
|
157 |
+
output_channel = block_out_channels[i]
|
158 |
+
is_final_block = i == len(block_out_channels) - 1
|
159 |
+
|
160 |
+
down_block = get_down_block(
|
161 |
+
down_block_type,
|
162 |
+
num_layers=layers_per_block,
|
163 |
+
in_channels=input_channel,
|
164 |
+
out_channels=output_channel,
|
165 |
+
temb_channels=time_embed_dim,
|
166 |
+
add_downsample=not is_final_block,
|
167 |
+
resnet_eps=norm_eps,
|
168 |
+
resnet_act_fn=act_fn,
|
169 |
+
resnet_groups=norm_num_groups,
|
170 |
+
cross_attention_dim=cross_attention_dim,
|
171 |
+
attn_num_head_channels=attention_head_dim[i],
|
172 |
+
downsample_padding=downsample_padding,
|
173 |
+
dual_cross_attention=dual_cross_attention,
|
174 |
+
use_linear_projection=use_linear_projection,
|
175 |
+
only_cross_attention=only_cross_attention[i],
|
176 |
+
upcast_attention=upcast_attention,
|
177 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
178 |
+
use_sc_attn=use_sc_attn,
|
179 |
+
# idx range from 0 to 2, i.e., ['CrossAttnDownBlock2D', 'CrossAttnDownBlock2D', 'CrossAttnDownBlock2D', 'DownBlock2D']
|
180 |
+
use_st_attn=True if (use_st_attn and i == st_attn_idx) else False,
|
181 |
+
)
|
182 |
+
self.down_blocks.append(down_block)
|
183 |
+
|
184 |
+
# mid
|
185 |
+
if mid_block_type == "UNetMidBlock2DCrossAttn":
|
186 |
+
self.mid_block = UNetMidBlock2DCrossAttn(
|
187 |
+
in_channels=block_out_channels[-1],
|
188 |
+
temb_channels=time_embed_dim,
|
189 |
+
resnet_eps=norm_eps,
|
190 |
+
resnet_act_fn=act_fn,
|
191 |
+
output_scale_factor=mid_block_scale_factor,
|
192 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
193 |
+
cross_attention_dim=cross_attention_dim,
|
194 |
+
attn_num_head_channels=attention_head_dim[-1],
|
195 |
+
resnet_groups=norm_num_groups,
|
196 |
+
dual_cross_attention=dual_cross_attention,
|
197 |
+
use_linear_projection=use_linear_projection,
|
198 |
+
upcast_attention=upcast_attention,
|
199 |
+
use_sc_attn=use_sc_attn,
|
200 |
+
use_st_attn=use_st_attn,
|
201 |
+
)
|
202 |
+
else:
|
203 |
+
raise ValueError(f"unknown mid_block_type : {mid_block_type}")
|
204 |
+
|
205 |
+
# count how many layers upsample the videos
|
206 |
+
self.num_upsamplers = 0
|
207 |
+
|
208 |
+
# up
|
209 |
+
reversed_block_out_channels = list(reversed(block_out_channels))
|
210 |
+
reversed_attention_head_dim = list(reversed(attention_head_dim))
|
211 |
+
only_cross_attention = list(reversed(only_cross_attention))
|
212 |
+
output_channel = reversed_block_out_channels[0]
|
213 |
+
for i, up_block_type in enumerate(up_block_types):
|
214 |
+
is_final_block = i == len(block_out_channels) - 1
|
215 |
+
|
216 |
+
prev_output_channel = output_channel
|
217 |
+
output_channel = reversed_block_out_channels[i]
|
218 |
+
input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)]
|
219 |
+
|
220 |
+
# add upsample block for all BUT final layer
|
221 |
+
if not is_final_block:
|
222 |
+
add_upsample = True
|
223 |
+
self.num_upsamplers += 1
|
224 |
+
else:
|
225 |
+
add_upsample = False
|
226 |
+
|
227 |
+
up_block = get_up_block(
|
228 |
+
up_block_type,
|
229 |
+
num_layers=layers_per_block + 1,
|
230 |
+
in_channels=input_channel,
|
231 |
+
out_channels=output_channel,
|
232 |
+
prev_output_channel=prev_output_channel,
|
233 |
+
temb_channels=time_embed_dim,
|
234 |
+
add_upsample=add_upsample,
|
235 |
+
resnet_eps=norm_eps,
|
236 |
+
resnet_act_fn=act_fn,
|
237 |
+
resnet_groups=norm_num_groups,
|
238 |
+
cross_attention_dim=cross_attention_dim,
|
239 |
+
attn_num_head_channels=reversed_attention_head_dim[i],
|
240 |
+
dual_cross_attention=dual_cross_attention,
|
241 |
+
use_linear_projection=use_linear_projection,
|
242 |
+
only_cross_attention=only_cross_attention[i],
|
243 |
+
upcast_attention=upcast_attention,
|
244 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
245 |
+
use_sc_attn=use_sc_attn,
|
246 |
+
# idx range from 0 to 2, i.e., ['UpBlock2D', 'CrossAttnUpBlock2D', 'CrossAttnUpBlock2D', 'CrossAttnUpBlock2D']
|
247 |
+
use_st_attn=True if (use_st_attn and i-1 == st_attn_idx) else False,
|
248 |
+
)
|
249 |
+
self.up_blocks.append(up_block)
|
250 |
+
prev_output_channel = output_channel
|
251 |
+
|
252 |
+
# out
|
253 |
+
self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=norm_eps)
|
254 |
+
self.conv_act = nn.SiLU()
|
255 |
+
self.conv_out = InflatedConv3d(block_out_channels[0], out_channels, kernel_size=3, padding=1)
|
256 |
+
|
257 |
+
def set_attention_slice(self, slice_size):
|
258 |
+
r"""
|
259 |
+
Enable sliced attention computation.
|
260 |
+
|
261 |
+
When this option is enabled, the attention module will split the input tensor in slices, to compute attention
|
262 |
+
in several steps. This is useful to save some memory in exchange for a small speed decrease.
|
263 |
+
|
264 |
+
Args:
|
265 |
+
slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`):
|
266 |
+
When `"auto"`, halves the input to the attention heads, so attention will be computed in two steps. If
|
267 |
+
`"max"`, maxium amount of memory will be saved by running only one slice at a time. If a number is
|
268 |
+
provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim`
|
269 |
+
must be a multiple of `slice_size`.
|
270 |
+
"""
|
271 |
+
sliceable_head_dims = []
|
272 |
+
|
273 |
+
def fn_recursive_retrieve_slicable_dims(module: torch.nn.Module):
|
274 |
+
if hasattr(module, "set_attention_slice"):
|
275 |
+
sliceable_head_dims.append(module.sliceable_head_dim)
|
276 |
+
|
277 |
+
for child in module.children():
|
278 |
+
fn_recursive_retrieve_slicable_dims(child)
|
279 |
+
|
280 |
+
# retrieve number of attention layers
|
281 |
+
for module in self.children():
|
282 |
+
fn_recursive_retrieve_slicable_dims(module)
|
283 |
+
|
284 |
+
num_slicable_layers = len(sliceable_head_dims)
|
285 |
+
|
286 |
+
if slice_size == "auto":
|
287 |
+
# half the attention head size is usually a good trade-off between
|
288 |
+
# speed and memory
|
289 |
+
slice_size = [dim // 2 for dim in sliceable_head_dims]
|
290 |
+
elif slice_size == "max":
|
291 |
+
# make smallest slice possible
|
292 |
+
slice_size = num_slicable_layers * [1]
|
293 |
+
|
294 |
+
slice_size = num_slicable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size
|
295 |
+
|
296 |
+
if len(slice_size) != len(sliceable_head_dims):
|
297 |
+
raise ValueError(
|
298 |
+
f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different"
|
299 |
+
f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}."
|
300 |
+
)
|
301 |
+
|
302 |
+
for i in range(len(slice_size)):
|
303 |
+
size = slice_size[i]
|
304 |
+
dim = sliceable_head_dims[i]
|
305 |
+
if size is not None and size > dim:
|
306 |
+
raise ValueError(f"size {size} has to be smaller or equal to {dim}.")
|
307 |
+
|
308 |
+
# Recursively walk through all the children.
|
309 |
+
# Any children which exposes the set_attention_slice method
|
310 |
+
# gets the message
|
311 |
+
def fn_recursive_set_attention_slice(module: torch.nn.Module, slice_size: List[int]):
|
312 |
+
if hasattr(module, "set_attention_slice"):
|
313 |
+
module.set_attention_slice(slice_size.pop())
|
314 |
+
|
315 |
+
for child in module.children():
|
316 |
+
fn_recursive_set_attention_slice(child, slice_size)
|
317 |
+
|
318 |
+
reversed_slice_size = list(reversed(slice_size))
|
319 |
+
for module in self.children():
|
320 |
+
fn_recursive_set_attention_slice(module, reversed_slice_size)
|
321 |
+
|
322 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
323 |
+
if isinstance(module, (CrossAttnDownBlock2D, DownBlock2D, CrossAttnUpBlock2D, UpBlock2D)):
|
324 |
+
module.gradient_checkpointing = value
|
325 |
+
|
326 |
+
def forward(
|
327 |
+
self,
|
328 |
+
sample: torch.FloatTensor,
|
329 |
+
timestep: Union[torch.Tensor, float, int],
|
330 |
+
encoder_hidden_states: torch.Tensor,
|
331 |
+
class_labels: Optional[torch.Tensor] = None,
|
332 |
+
attention_mask: Optional[torch.Tensor] = None,
|
333 |
+
return_dict: bool = True,
|
334 |
+
normal_infer: bool = False,
|
335 |
+
) -> Union[UNet2DConditionOutput, Tuple]:
|
336 |
+
r"""
|
337 |
+
Args:
|
338 |
+
sample (`torch.FloatTensor`): (batch, channel, height, width) noisy inputs tensor
|
339 |
+
timestep (`torch.FloatTensor` or `float` or `int`): (batch) timesteps
|
340 |
+
encoder_hidden_states (`torch.FloatTensor`): (batch, sequence_length, feature_dim) encoder hidden states
|
341 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
342 |
+
Whether or not to return a [`models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain tuple.
|
343 |
+
|
344 |
+
Returns:
|
345 |
+
[`~models.unet_2d_condition.UNet2DConditionOutput`] or `tuple`:
|
346 |
+
[`~models.unet_2d_condition.UNet2DConditionOutput`] if `return_dict` is True, otherwise a `tuple`. When
|
347 |
+
returning a tuple, the first element is the sample tensor.
|
348 |
+
"""
|
349 |
+
# By default samples have to be AT least a multiple of the overall upsampling factor.
|
350 |
+
# The overall upsampling factor is equal to 2 ** (# num of upsampling layears).
|
351 |
+
# However, the upsampling interpolation output size can be forced to fit any upsampling size
|
352 |
+
# on the fly if necessary.
|
353 |
+
default_overall_up_factor = 2**self.num_upsamplers
|
354 |
+
|
355 |
+
# upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor`
|
356 |
+
forward_upsample_size = False
|
357 |
+
upsample_size = None
|
358 |
+
|
359 |
+
if any(s % default_overall_up_factor != 0 for s in sample.shape[-2:]):
|
360 |
+
logger.info("Forward upsample size to force interpolation output size.")
|
361 |
+
forward_upsample_size = True
|
362 |
+
|
363 |
+
# prepare attention_mask
|
364 |
+
if attention_mask is not None:
|
365 |
+
attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
|
366 |
+
attention_mask = attention_mask.unsqueeze(1)
|
367 |
+
|
368 |
+
# center input if necessary
|
369 |
+
if self.config.center_input_sample:
|
370 |
+
sample = 2 * sample - 1.0
|
371 |
+
|
372 |
+
# time
|
373 |
+
timesteps = timestep
|
374 |
+
if not torch.is_tensor(timesteps):
|
375 |
+
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
|
376 |
+
# This would be a good case for the `match` statement (Python 3.10+)
|
377 |
+
is_mps = sample.device.type == "mps"
|
378 |
+
if isinstance(timestep, float):
|
379 |
+
dtype = torch.float32 if is_mps else torch.float64
|
380 |
+
else:
|
381 |
+
dtype = torch.int32 if is_mps else torch.int64
|
382 |
+
timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
|
383 |
+
elif len(timesteps.shape) == 0:
|
384 |
+
timesteps = timesteps[None].to(sample.device)
|
385 |
+
|
386 |
+
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
387 |
+
timesteps = timesteps.expand(sample.shape[0])
|
388 |
+
|
389 |
+
t_emb = self.time_proj(timesteps)
|
390 |
+
|
391 |
+
# timesteps does not contain any weights and will always return f32 tensors
|
392 |
+
# but time_embedding might actually be running in fp16. so we need to cast here.
|
393 |
+
# there might be better ways to encapsulate this.
|
394 |
+
t_emb = t_emb.to(dtype=self.dtype)
|
395 |
+
emb = self.time_embedding(t_emb)
|
396 |
+
|
397 |
+
if self.class_embedding is not None:
|
398 |
+
if class_labels is None:
|
399 |
+
raise ValueError("class_labels should be provided when num_class_embeds > 0")
|
400 |
+
|
401 |
+
if self.config.class_embed_type == "timestep":
|
402 |
+
class_labels = self.time_proj(class_labels)
|
403 |
+
|
404 |
+
class_emb = self.class_embedding(class_labels).to(dtype=self.dtype)
|
405 |
+
emb = emb + class_emb
|
406 |
+
|
407 |
+
# pre-process
|
408 |
+
sample = self.conv_in(sample)
|
409 |
+
|
410 |
+
# down
|
411 |
+
down_block_res_samples = (sample,)
|
412 |
+
for downsample_block in self.down_blocks:
|
413 |
+
if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
|
414 |
+
sample, res_samples = downsample_block(
|
415 |
+
hidden_states=sample,
|
416 |
+
temb=emb,
|
417 |
+
encoder_hidden_states=encoder_hidden_states,
|
418 |
+
attention_mask=attention_mask,
|
419 |
+
normal_infer=normal_infer,
|
420 |
+
)
|
421 |
+
else:
|
422 |
+
sample, res_samples = downsample_block(hidden_states=sample, temb=emb)
|
423 |
+
|
424 |
+
down_block_res_samples += res_samples
|
425 |
+
|
426 |
+
# mid
|
427 |
+
sample = self.mid_block(
|
428 |
+
sample, emb, encoder_hidden_states=encoder_hidden_states, attention_mask=attention_mask,
|
429 |
+
normal_infer=normal_infer,
|
430 |
+
)
|
431 |
+
|
432 |
+
# up
|
433 |
+
for i, upsample_block in enumerate(self.up_blocks):
|
434 |
+
is_final_block = i == len(self.up_blocks) - 1
|
435 |
+
|
436 |
+
res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
|
437 |
+
down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]
|
438 |
+
|
439 |
+
# if we have not reached the final block and need to forward the
|
440 |
+
# upsample size, we do it here
|
441 |
+
if not is_final_block and forward_upsample_size:
|
442 |
+
upsample_size = down_block_res_samples[-1].shape[2:]
|
443 |
+
|
444 |
+
if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention:
|
445 |
+
sample = upsample_block(
|
446 |
+
hidden_states=sample,
|
447 |
+
temb=emb,
|
448 |
+
res_hidden_states_tuple=res_samples,
|
449 |
+
encoder_hidden_states=encoder_hidden_states,
|
450 |
+
upsample_size=upsample_size,
|
451 |
+
attention_mask=attention_mask,
|
452 |
+
normal_infer=normal_infer,
|
453 |
+
)
|
454 |
+
else:
|
455 |
+
sample = upsample_block(
|
456 |
+
hidden_states=sample, temb=emb, res_hidden_states_tuple=res_samples, upsample_size=upsample_size
|
457 |
+
)
|
458 |
+
# post-process
|
459 |
+
sample = self.conv_norm_out(sample)
|
460 |
+
sample = self.conv_act(sample)
|
461 |
+
sample = self.conv_out(sample)
|
462 |
+
|
463 |
+
if not return_dict:
|
464 |
+
return (sample,)
|
465 |
+
|
466 |
+
return UNet2DConditionOutput(sample=sample)
|
467 |
+
|
468 |
+
@classmethod
|
469 |
+
def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], **kwargs):
|
470 |
+
r"""
|
471 |
+
for gradio demo
|
472 |
+
"""
|
473 |
+
|
474 |
+
import diffusers
|
475 |
+
__version__ = diffusers.__version__
|
476 |
+
from diffusers.utils import (
|
477 |
+
CONFIG_NAME,
|
478 |
+
DIFFUSERS_CACHE,
|
479 |
+
HUGGINGFACE_CO_RESOLVE_ENDPOINT,
|
480 |
+
SAFETENSORS_WEIGHTS_NAME,
|
481 |
+
WEIGHTS_NAME,
|
482 |
+
is_accelerate_available,
|
483 |
+
is_safetensors_available,
|
484 |
+
is_torch_version,
|
485 |
+
logging,
|
486 |
+
)
|
487 |
+
|
488 |
+
if is_torch_version(">=", "1.9.0"):
|
489 |
+
_LOW_CPU_MEM_USAGE_DEFAULT = True
|
490 |
+
else:
|
491 |
+
_LOW_CPU_MEM_USAGE_DEFAULT = False
|
492 |
+
|
493 |
+
|
494 |
+
if is_accelerate_available():
|
495 |
+
import accelerate
|
496 |
+
from accelerate.utils import set_module_tensor_to_device
|
497 |
+
from accelerate.utils.versions import is_torch_version
|
498 |
+
|
499 |
+
if is_safetensors_available():
|
500 |
+
import safetensors
|
501 |
+
|
502 |
+
from diffusers.modeling_utils import load_state_dict
|
503 |
+
|
504 |
+
cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE)
|
505 |
+
ignore_mismatched_sizes = kwargs.pop("ignore_mismatched_sizes", False)
|
506 |
+
force_download = kwargs.pop("force_download", False)
|
507 |
+
resume_download = kwargs.pop("resume_download", False)
|
508 |
+
proxies = kwargs.pop("proxies", None)
|
509 |
+
output_loading_info = kwargs.pop("output_loading_info", False)
|
510 |
+
local_files_only = kwargs.pop("local_files_only", False)
|
511 |
+
use_auth_token = kwargs.pop("use_auth_token", None)
|
512 |
+
revision = kwargs.pop("revision", None)
|
513 |
+
torch_dtype = kwargs.pop("torch_dtype", None)
|
514 |
+
subfolder = kwargs.pop("subfolder", None)
|
515 |
+
device_map = kwargs.pop("device_map", None)
|
516 |
+
low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT)
|
517 |
+
# custom arg
|
518 |
+
use_sc_attn = kwargs.pop("use_sc_attn", True)
|
519 |
+
use_st_attn = kwargs.pop("use_st_attn", True)
|
520 |
+
st_attn_idx = kwargs.pop("st_attn_idx", 0)
|
521 |
+
|
522 |
+
if low_cpu_mem_usage and not is_accelerate_available():
|
523 |
+
low_cpu_mem_usage = False
|
524 |
+
logger.warning(
|
525 |
+
"Cannot initialize model with low cpu memory usage because `accelerate` was not found in the"
|
526 |
+
" environment. Defaulting to `low_cpu_mem_usage=False`. It is strongly recommended to install"
|
527 |
+
" `accelerate` for faster and less memory-intense model loading. You can do so with: \n```\npip"
|
528 |
+
" install accelerate\n```\n."
|
529 |
+
)
|
530 |
+
|
531 |
+
if device_map is not None and not is_accelerate_available():
|
532 |
+
raise NotImplementedError(
|
533 |
+
"Loading and dispatching requires `accelerate`. Please make sure to install accelerate or set"
|
534 |
+
" `device_map=None`. You can install accelerate with `pip install accelerate`."
|
535 |
+
)
|
536 |
+
|
537 |
+
# Check if we can handle device_map and dispatching the weights
|
538 |
+
if device_map is not None and not is_torch_version(">=", "1.9.0"):
|
539 |
+
raise NotImplementedError(
|
540 |
+
"Loading and dispatching requires torch >= 1.9.0. Please either update your PyTorch version or set"
|
541 |
+
" `device_map=None`."
|
542 |
+
)
|
543 |
+
|
544 |
+
if low_cpu_mem_usage is True and not is_torch_version(">=", "1.9.0"):
|
545 |
+
raise NotImplementedError(
|
546 |
+
"Low memory initialization requires torch >= 1.9.0. Please either update your PyTorch version or set"
|
547 |
+
" `low_cpu_mem_usage=False`."
|
548 |
+
)
|
549 |
+
|
550 |
+
if low_cpu_mem_usage is False and device_map is not None:
|
551 |
+
raise ValueError(
|
552 |
+
f"You cannot set `low_cpu_mem_usage` to `False` while using device_map={device_map} for loading and"
|
553 |
+
" dispatching. Please make sure to set `low_cpu_mem_usage=True`."
|
554 |
+
)
|
555 |
+
|
556 |
+
user_agent = {
|
557 |
+
"diffusers": __version__,
|
558 |
+
"file_type": "model",
|
559 |
+
"framework": "pytorch",
|
560 |
+
}
|
561 |
+
|
562 |
+
# Load config if we don't provide a configuration
|
563 |
+
config_path = pretrained_model_name_or_path
|
564 |
+
|
565 |
+
# This variable will flag if we're loading a sharded checkpoint. In this case the archive file is just the
|
566 |
+
# Load model
|
567 |
+
|
568 |
+
model_file = None
|
569 |
+
if is_safetensors_available():
|
570 |
+
try:
|
571 |
+
model_file = cls._get_model_file(
|
572 |
+
pretrained_model_name_or_path,
|
573 |
+
weights_name=SAFETENSORS_WEIGHTS_NAME,
|
574 |
+
cache_dir=cache_dir,
|
575 |
+
force_download=force_download,
|
576 |
+
resume_download=resume_download,
|
577 |
+
proxies=proxies,
|
578 |
+
local_files_only=local_files_only,
|
579 |
+
use_auth_token=use_auth_token,
|
580 |
+
revision=revision,
|
581 |
+
subfolder=subfolder,
|
582 |
+
user_agent=user_agent,
|
583 |
+
)
|
584 |
+
except:
|
585 |
+
pass
|
586 |
+
if model_file is None:
|
587 |
+
model_file = cls._get_model_file(
|
588 |
+
pretrained_model_name_or_path,
|
589 |
+
weights_name=WEIGHTS_NAME,
|
590 |
+
cache_dir=cache_dir,
|
591 |
+
force_download=force_download,
|
592 |
+
resume_download=resume_download,
|
593 |
+
proxies=proxies,
|
594 |
+
local_files_only=local_files_only,
|
595 |
+
use_auth_token=use_auth_token,
|
596 |
+
revision=revision,
|
597 |
+
subfolder=subfolder,
|
598 |
+
user_agent=user_agent,
|
599 |
+
)
|
600 |
+
|
601 |
+
if low_cpu_mem_usage:
|
602 |
+
# Instantiate model with empty weights
|
603 |
+
with accelerate.init_empty_weights():
|
604 |
+
config, unused_kwargs = cls.load_config(
|
605 |
+
config_path,
|
606 |
+
cache_dir=cache_dir,
|
607 |
+
return_unused_kwargs=True,
|
608 |
+
force_download=force_download,
|
609 |
+
resume_download=resume_download,
|
610 |
+
proxies=proxies,
|
611 |
+
local_files_only=local_files_only,
|
612 |
+
use_auth_token=use_auth_token,
|
613 |
+
revision=revision,
|
614 |
+
subfolder=subfolder,
|
615 |
+
device_map=device_map,
|
616 |
+
**kwargs,
|
617 |
+
)
|
618 |
+
|
619 |
+
# custom arg
|
620 |
+
config['use_sc_attn'] = use_sc_attn
|
621 |
+
config['use_st_attn'] = use_st_attn
|
622 |
+
config['st_attn_idx'] = st_attn_idx
|
623 |
+
|
624 |
+
model = cls.from_config(config, **unused_kwargs)
|
625 |
+
|
626 |
+
# if device_map is Non,e load the state dict on move the params from meta device to the cpu
|
627 |
+
if device_map is None:
|
628 |
+
param_device = "cpu"
|
629 |
+
state_dict = load_state_dict(model_file)
|
630 |
+
# move the parms from meta device to cpu
|
631 |
+
for param_name, param in state_dict.items():
|
632 |
+
set_module_tensor_to_device(model, param_name, param_device, value=param)
|
633 |
+
else: # else let accelerate handle loading and dispatching.
|
634 |
+
# Load weights and dispatch according to the device_map
|
635 |
+
# by deafult the device_map is None and the weights are loaded on the CPU
|
636 |
+
accelerate.load_checkpoint_and_dispatch(model, model_file, device_map)
|
637 |
+
|
638 |
+
loading_info = {
|
639 |
+
"missing_keys": [],
|
640 |
+
"unexpected_keys": [],
|
641 |
+
"mismatched_keys": [],
|
642 |
+
"error_msgs": [],
|
643 |
+
}
|
644 |
+
else:
|
645 |
+
config, unused_kwargs = cls.load_config(
|
646 |
+
config_path,
|
647 |
+
cache_dir=cache_dir,
|
648 |
+
return_unused_kwargs=True,
|
649 |
+
force_download=force_download,
|
650 |
+
resume_download=resume_download,
|
651 |
+
proxies=proxies,
|
652 |
+
local_files_only=local_files_only,
|
653 |
+
use_auth_token=use_auth_token,
|
654 |
+
revision=revision,
|
655 |
+
subfolder=subfolder,
|
656 |
+
device_map=device_map,
|
657 |
+
**kwargs,
|
658 |
+
)
|
659 |
+
|
660 |
+
# custom arg
|
661 |
+
config['use_sc_attn'] = use_sc_attn
|
662 |
+
config['use_st_attn'] = use_st_attn
|
663 |
+
config['st_attn_idx'] = st_attn_idx
|
664 |
+
|
665 |
+
model = cls.from_config(config, **unused_kwargs)
|
666 |
+
|
667 |
+
state_dict = load_state_dict(model_file)
|
668 |
+
dtype = set(v.dtype for v in state_dict.values())
|
669 |
+
|
670 |
+
if len(dtype) > 1 and torch.float32 not in dtype:
|
671 |
+
raise ValueError(
|
672 |
+
f"The weights of the model file {model_file} have a mixture of incompatible dtypes {dtype}. Please"
|
673 |
+
f" make sure that {model_file} weights have only one dtype."
|
674 |
+
)
|
675 |
+
elif len(dtype) > 1 and torch.float32 in dtype:
|
676 |
+
dtype = torch.float32
|
677 |
+
else:
|
678 |
+
dtype = dtype.pop()
|
679 |
+
|
680 |
+
# move model to correct dtype
|
681 |
+
model = model.to(dtype)
|
682 |
+
|
683 |
+
model, missing_keys, unexpected_keys, mismatched_keys, error_msgs = cls._load_pretrained_model(
|
684 |
+
model,
|
685 |
+
state_dict,
|
686 |
+
model_file,
|
687 |
+
pretrained_model_name_or_path,
|
688 |
+
ignore_mismatched_sizes=ignore_mismatched_sizes,
|
689 |
+
)
|
690 |
+
|
691 |
+
loading_info = {
|
692 |
+
"missing_keys": missing_keys,
|
693 |
+
"unexpected_keys": unexpected_keys,
|
694 |
+
"mismatched_keys": mismatched_keys,
|
695 |
+
"error_msgs": error_msgs,
|
696 |
+
}
|
697 |
+
|
698 |
+
if torch_dtype is not None and not isinstance(torch_dtype, torch.dtype):
|
699 |
+
raise ValueError(
|
700 |
+
f"{torch_dtype} needs to be of type `torch.dtype`, e.g. `torch.float16`, but is {type(torch_dtype)}."
|
701 |
+
)
|
702 |
+
elif torch_dtype is not None:
|
703 |
+
model = model.to(torch_dtype)
|
704 |
+
|
705 |
+
model.register_to_config(_name_or_path=pretrained_model_name_or_path)
|
706 |
+
|
707 |
+
# Set model in evaluation mode to deactivate DropOut modules by default
|
708 |
+
model.eval()
|
709 |
+
if output_loading_info:
|
710 |
+
return model, loading_info
|
711 |
+
|
712 |
+
return model
|
vid2vid_zero/p2p/null_text_w_ptp.py
ADDED
@@ -0,0 +1,504 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 Google LLC
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
|
16 |
+
from typing import Optional, Union, Tuple, List, Callable, Dict
|
17 |
+
from tqdm import tqdm
|
18 |
+
import torch
|
19 |
+
import torch.nn.functional as nnf
|
20 |
+
import numpy as np
|
21 |
+
import abc
|
22 |
+
from . import ptp_utils
|
23 |
+
from . import seq_aligner
|
24 |
+
import shutil
|
25 |
+
from torch.optim.adam import Adam
|
26 |
+
from PIL import Image
|
27 |
+
|
28 |
+
|
29 |
+
LOW_RESOURCE = False
|
30 |
+
NUM_DDIM_STEPS = 50
|
31 |
+
MAX_NUM_WORDS = 77
|
32 |
+
device = torch.device('cuda')
|
33 |
+
from transformers import CLIPTextModel, CLIPTokenizer
|
34 |
+
|
35 |
+
pretrained_model_path = "checkpoints/stable-diffusion-v1-4/"
|
36 |
+
|
37 |
+
ldm_stable = None
|
38 |
+
tokenizer = CLIPTokenizer.from_pretrained(pretrained_model_path, subfolder="tokenizer")
|
39 |
+
|
40 |
+
|
41 |
+
class LocalBlend:
|
42 |
+
|
43 |
+
def get_mask(self, maps, alpha, use_pool):
|
44 |
+
k = 1
|
45 |
+
maps = (maps * alpha).sum(-1).mean(1)
|
46 |
+
if use_pool:
|
47 |
+
maps = nnf.max_pool2d(maps, (k * 2 + 1, k * 2 +1), (1, 1), padding=(k, k))
|
48 |
+
mask = nnf.interpolate(maps, size=(x_t.shape[2:]))
|
49 |
+
mask = mask / mask.max(2, keepdims=True)[0].max(3, keepdims=True)[0]
|
50 |
+
mask = mask.gt(self.th[1-int(use_pool)])
|
51 |
+
mask = mask[:1] + mask
|
52 |
+
return mask
|
53 |
+
|
54 |
+
def __call__(self, x_t, attention_store):
|
55 |
+
self.counter += 1
|
56 |
+
if self.counter > self.start_blend:
|
57 |
+
|
58 |
+
maps = attention_store["down_cross"][2:4] + attention_store["up_cross"][:3]
|
59 |
+
maps = [item.reshape(self.alpha_layers.shape[0], -1, 1, 16, 16, MAX_NUM_WORDS) for item in maps]
|
60 |
+
maps = torch.cat(maps, dim=1)
|
61 |
+
mask = self.get_mask(maps, self.alpha_layers, True)
|
62 |
+
if self.substruct_layers is not None:
|
63 |
+
maps_sub = ~self.get_mask(maps, self.substruct_layers, False)
|
64 |
+
mask = mask * maps_sub
|
65 |
+
mask = mask.float()
|
66 |
+
x_t = x_t[:1] + mask * (x_t - x_t[:1])
|
67 |
+
return x_t
|
68 |
+
|
69 |
+
def __init__(self, prompts: List[str], words: List[List[str]], substruct_words=None, start_blend=0.2, th=(.3, .3)):
|
70 |
+
alpha_layers = torch.zeros(len(prompts), 1, 1, 1, 1, MAX_NUM_WORDS)
|
71 |
+
for i, (prompt, words_) in enumerate(zip(prompts, words)):
|
72 |
+
if type(words_) is str:
|
73 |
+
words_ = [words_]
|
74 |
+
for word in words_:
|
75 |
+
ind = ptp_utils.get_word_inds(prompt, word, tokenizer)
|
76 |
+
alpha_layers[i, :, :, :, :, ind] = 1
|
77 |
+
|
78 |
+
if substruct_words is not None:
|
79 |
+
substruct_layers = torch.zeros(len(prompts), 1, 1, 1, 1, MAX_NUM_WORDS)
|
80 |
+
for i, (prompt, words_) in enumerate(zip(prompts, substruct_words)):
|
81 |
+
if type(words_) is str:
|
82 |
+
words_ = [words_]
|
83 |
+
for word in words_:
|
84 |
+
ind = ptp_utils.get_word_inds(prompt, word, tokenizer)
|
85 |
+
substruct_layers[i, :, :, :, :, ind] = 1
|
86 |
+
self.substruct_layers = substruct_layers.to(device)
|
87 |
+
else:
|
88 |
+
self.substruct_layers = None
|
89 |
+
self.alpha_layers = alpha_layers.to(device)
|
90 |
+
self.start_blend = int(start_blend * NUM_DDIM_STEPS)
|
91 |
+
self.counter = 0
|
92 |
+
self.th=th
|
93 |
+
|
94 |
+
|
95 |
+
class EmptyControl:
|
96 |
+
|
97 |
+
|
98 |
+
def step_callback(self, x_t):
|
99 |
+
return x_t
|
100 |
+
|
101 |
+
def between_steps(self):
|
102 |
+
return
|
103 |
+
|
104 |
+
def __call__(self, attn, is_cross: bool, place_in_unet: str):
|
105 |
+
return attn
|
106 |
+
|
107 |
+
|
108 |
+
class AttentionControl(abc.ABC):
|
109 |
+
|
110 |
+
def step_callback(self, x_t):
|
111 |
+
return x_t
|
112 |
+
|
113 |
+
def between_steps(self):
|
114 |
+
return
|
115 |
+
|
116 |
+
@property
|
117 |
+
def num_uncond_att_layers(self):
|
118 |
+
return self.num_att_layers if LOW_RESOURCE else 0
|
119 |
+
|
120 |
+
@abc.abstractmethod
|
121 |
+
def forward (self, attn, is_cross: bool, place_in_unet: str):
|
122 |
+
raise NotImplementedError
|
123 |
+
|
124 |
+
def __call__(self, attn, is_cross: bool, place_in_unet: str):
|
125 |
+
if self.cur_att_layer >= self.num_uncond_att_layers:
|
126 |
+
if LOW_RESOURCE:
|
127 |
+
attn = self.forward(attn, is_cross, place_in_unet)
|
128 |
+
else:
|
129 |
+
h = attn.shape[0]
|
130 |
+
attn[h // 2:] = self.forward(attn[h // 2:], is_cross, place_in_unet)
|
131 |
+
self.cur_att_layer += 1
|
132 |
+
if self.cur_att_layer == self.num_att_layers + self.num_uncond_att_layers:
|
133 |
+
self.cur_att_layer = 0
|
134 |
+
self.cur_step += 1
|
135 |
+
self.between_steps()
|
136 |
+
return attn
|
137 |
+
|
138 |
+
def reset(self):
|
139 |
+
self.cur_step = 0
|
140 |
+
self.cur_att_layer = 0
|
141 |
+
|
142 |
+
def __init__(self):
|
143 |
+
self.cur_step = 0
|
144 |
+
self.num_att_layers = -1
|
145 |
+
self.cur_att_layer = 0
|
146 |
+
|
147 |
+
|
148 |
+
class SpatialReplace(EmptyControl):
|
149 |
+
|
150 |
+
def step_callback(self, x_t):
|
151 |
+
if self.cur_step < self.stop_inject:
|
152 |
+
b = x_t.shape[0]
|
153 |
+
x_t = x_t[:1].expand(b, *x_t.shape[1:])
|
154 |
+
return x_t
|
155 |
+
|
156 |
+
def __init__(self, stop_inject: float):
|
157 |
+
super(SpatialReplace, self).__init__()
|
158 |
+
self.stop_inject = int((1 - stop_inject) * NUM_DDIM_STEPS)
|
159 |
+
|
160 |
+
|
161 |
+
class AttentionStore(AttentionControl):
|
162 |
+
|
163 |
+
@staticmethod
|
164 |
+
def get_empty_store():
|
165 |
+
return {"down_cross": [], "mid_cross": [], "up_cross": [],
|
166 |
+
"down_self": [], "mid_self": [], "up_self": []}
|
167 |
+
|
168 |
+
def forward(self, attn, is_cross: bool, place_in_unet: str):
|
169 |
+
key = f"{place_in_unet}_{'cross' if is_cross else 'self'}"
|
170 |
+
if attn.shape[1] <= 32 ** 2: # avoid memory overhead
|
171 |
+
self.step_store[key].append(attn)
|
172 |
+
return attn
|
173 |
+
|
174 |
+
def between_steps(self):
|
175 |
+
if len(self.attention_store) == 0:
|
176 |
+
self.attention_store = self.step_store
|
177 |
+
else:
|
178 |
+
for key in self.attention_store:
|
179 |
+
for i in range(len(self.attention_store[key])):
|
180 |
+
self.attention_store[key][i] += self.step_store[key][i]
|
181 |
+
self.step_store = self.get_empty_store()
|
182 |
+
|
183 |
+
def get_average_attention(self):
|
184 |
+
average_attention = {key: [item / self.cur_step for item in self.attention_store[key]] for key in self.attention_store}
|
185 |
+
return average_attention
|
186 |
+
|
187 |
+
|
188 |
+
def reset(self):
|
189 |
+
super(AttentionStore, self).reset()
|
190 |
+
self.step_store = self.get_empty_store()
|
191 |
+
self.attention_store = {}
|
192 |
+
|
193 |
+
def __init__(self):
|
194 |
+
super(AttentionStore, self).__init__()
|
195 |
+
self.step_store = self.get_empty_store()
|
196 |
+
self.attention_store = {}
|
197 |
+
|
198 |
+
|
199 |
+
class AttentionControlEdit(AttentionStore, abc.ABC):
|
200 |
+
|
201 |
+
def step_callback(self, x_t):
|
202 |
+
if self.local_blend is not None:
|
203 |
+
x_t = self.local_blend(x_t, self.attention_store)
|
204 |
+
return x_t
|
205 |
+
|
206 |
+
def replace_self_attention(self, attn_base, att_replace, place_in_unet):
|
207 |
+
if att_replace.shape[2] <= 32 ** 2:
|
208 |
+
attn_base = attn_base.unsqueeze(0).expand(att_replace.shape[0], *attn_base.shape)
|
209 |
+
return attn_base
|
210 |
+
else:
|
211 |
+
return att_replace
|
212 |
+
|
213 |
+
@abc.abstractmethod
|
214 |
+
def replace_cross_attention(self, attn_base, att_replace):
|
215 |
+
raise NotImplementedError
|
216 |
+
|
217 |
+
def forward(self, attn, is_cross: bool, place_in_unet: str):
|
218 |
+
super(AttentionControlEdit, self).forward(attn, is_cross, place_in_unet)
|
219 |
+
if is_cross or (self.num_self_replace[0] <= self.cur_step < self.num_self_replace[1]):
|
220 |
+
h = attn.shape[0] // (self.batch_size)
|
221 |
+
attn = attn.reshape(self.batch_size, h, *attn.shape[1:])
|
222 |
+
attn_base, attn_repalce = attn[0], attn[1:]
|
223 |
+
if is_cross:
|
224 |
+
alpha_words = self.cross_replace_alpha[self.cur_step]
|
225 |
+
attn_repalce_new = self.replace_cross_attention(attn_base, attn_repalce) * alpha_words + (1 - alpha_words) * attn_repalce
|
226 |
+
attn[1:] = attn_repalce_new
|
227 |
+
else:
|
228 |
+
attn[1:] = self.replace_self_attention(attn_base, attn_repalce, place_in_unet)
|
229 |
+
attn = attn.reshape(self.batch_size * h, *attn.shape[2:])
|
230 |
+
return attn
|
231 |
+
|
232 |
+
def __init__(self, prompts, num_steps: int,
|
233 |
+
cross_replace_steps: Union[float, Tuple[float, float], Dict[str, Tuple[float, float]]],
|
234 |
+
self_replace_steps: Union[float, Tuple[float, float]],
|
235 |
+
local_blend: Optional[LocalBlend]):
|
236 |
+
super(AttentionControlEdit, self).__init__()
|
237 |
+
self.batch_size = len(prompts)
|
238 |
+
self.cross_replace_alpha = ptp_utils.get_time_words_attention_alpha(prompts, num_steps, cross_replace_steps, tokenizer).to(device)
|
239 |
+
if type(self_replace_steps) is float:
|
240 |
+
self_replace_steps = 0, self_replace_steps
|
241 |
+
self.num_self_replace = int(num_steps * self_replace_steps[0]), int(num_steps * self_replace_steps[1])
|
242 |
+
self.local_blend = local_blend
|
243 |
+
|
244 |
+
class AttentionReplace(AttentionControlEdit):
|
245 |
+
|
246 |
+
def replace_cross_attention(self, attn_base, att_replace):
|
247 |
+
return torch.einsum('hpw,bwn->bhpn', attn_base, self.mapper)
|
248 |
+
|
249 |
+
def __init__(self, prompts, num_steps: int, cross_replace_steps: float, self_replace_steps: float,
|
250 |
+
local_blend: Optional[LocalBlend] = None):
|
251 |
+
super(AttentionReplace, self).__init__(prompts, num_steps, cross_replace_steps, self_replace_steps, local_blend)
|
252 |
+
self.mapper = seq_aligner.get_replacement_mapper(prompts, tokenizer).to(device)
|
253 |
+
|
254 |
+
|
255 |
+
class AttentionRefine(AttentionControlEdit):
|
256 |
+
|
257 |
+
def replace_cross_attention(self, attn_base, att_replace):
|
258 |
+
attn_base_replace = attn_base[:, :, self.mapper].permute(2, 0, 1, 3)
|
259 |
+
attn_replace = attn_base_replace * self.alphas + att_replace * (1 - self.alphas)
|
260 |
+
# attn_replace = attn_replace / attn_replace.sum(-1, keepdims=True)
|
261 |
+
return attn_replace
|
262 |
+
|
263 |
+
def __init__(self, prompts, num_steps: int, cross_replace_steps: float, self_replace_steps: float,
|
264 |
+
local_blend: Optional[LocalBlend] = None):
|
265 |
+
super(AttentionRefine, self).__init__(prompts, num_steps, cross_replace_steps, self_replace_steps, local_blend)
|
266 |
+
self.mapper, alphas = seq_aligner.get_refinement_mapper(prompts, tokenizer)
|
267 |
+
self.mapper, alphas = self.mapper.to(device), alphas.to(device)
|
268 |
+
self.alphas = alphas.reshape(alphas.shape[0], 1, 1, alphas.shape[1])
|
269 |
+
|
270 |
+
|
271 |
+
class AttentionReweight(AttentionControlEdit):
|
272 |
+
|
273 |
+
def replace_cross_attention(self, attn_base, att_replace):
|
274 |
+
if self.prev_controller is not None:
|
275 |
+
attn_base = self.prev_controller.replace_cross_attention(attn_base, att_replace)
|
276 |
+
attn_replace = attn_base[None, :, :, :] * self.equalizer[:, None, None, :]
|
277 |
+
# attn_replace = attn_replace / attn_replace.sum(-1, keepdims=True)
|
278 |
+
return attn_replace
|
279 |
+
|
280 |
+
def __init__(self, prompts, num_steps: int, cross_replace_steps: float, self_replace_steps: float, equalizer,
|
281 |
+
local_blend: Optional[LocalBlend] = None, controller: Optional[AttentionControlEdit] = None):
|
282 |
+
super(AttentionReweight, self).__init__(prompts, num_steps, cross_replace_steps, self_replace_steps, local_blend)
|
283 |
+
self.equalizer = equalizer.to(device)
|
284 |
+
self.prev_controller = controller
|
285 |
+
|
286 |
+
|
287 |
+
def get_equalizer(text: str, word_select: Union[int, Tuple[int, ...]], values: Union[List[float],
|
288 |
+
Tuple[float, ...]]):
|
289 |
+
if type(word_select) is int or type(word_select) is str:
|
290 |
+
word_select = (word_select,)
|
291 |
+
equalizer = torch.ones(1, 77)
|
292 |
+
|
293 |
+
for word, val in zip(word_select, values):
|
294 |
+
inds = ptp_utils.get_word_inds(text, word, tokenizer)
|
295 |
+
equalizer[:, inds] = val
|
296 |
+
return equalizer
|
297 |
+
|
298 |
+
def aggregate_attention(attention_store: AttentionStore, res: int, from_where: List[str], is_cross: bool, select: int):
|
299 |
+
out = []
|
300 |
+
attention_maps = attention_store.get_average_attention()
|
301 |
+
num_pixels = res ** 2
|
302 |
+
for location in from_where:
|
303 |
+
for item in attention_maps[f"{location}_{'cross' if is_cross else 'self'}"]:
|
304 |
+
if item.shape[1] == num_pixels:
|
305 |
+
cross_maps = item.reshape(len(prompts), -1, res, res, item.shape[-1])[select]
|
306 |
+
out.append(cross_maps)
|
307 |
+
out = torch.cat(out, dim=0)
|
308 |
+
out = out.sum(0) / out.shape[0]
|
309 |
+
return out.cpu()
|
310 |
+
|
311 |
+
|
312 |
+
def make_controller(prompts: List[str], is_replace_controller: bool, cross_replace_steps: Dict[str, float], self_replace_steps: float, blend_words=None, equilizer_params=None) -> AttentionControlEdit:
|
313 |
+
if blend_words is None:
|
314 |
+
lb = None
|
315 |
+
else:
|
316 |
+
lb = LocalBlend(prompts, blend_word)
|
317 |
+
if is_replace_controller:
|
318 |
+
controller = AttentionReplace(prompts, NUM_DDIM_STEPS, cross_replace_steps=cross_replace_steps, self_replace_steps=self_replace_steps, local_blend=lb)
|
319 |
+
else:
|
320 |
+
controller = AttentionRefine(prompts, NUM_DDIM_STEPS, cross_replace_steps=cross_replace_steps, self_replace_steps=self_replace_steps, local_blend=lb)
|
321 |
+
if equilizer_params is not None:
|
322 |
+
eq = get_equalizer(prompts[1], equilizer_params["words"], equilizer_params["values"])
|
323 |
+
controller = AttentionReweight(prompts, NUM_DDIM_STEPS, cross_replace_steps=cross_replace_steps,
|
324 |
+
self_replace_steps=self_replace_steps, equalizer=eq, local_blend=lb, controller=controller)
|
325 |
+
return controller
|
326 |
+
|
327 |
+
|
328 |
+
def show_cross_attention(attention_store: AttentionStore, res: int, from_where: List[str], select: int = 0):
|
329 |
+
tokens = tokenizer.encode(prompts[select])
|
330 |
+
decoder = tokenizer.decode
|
331 |
+
attention_maps = aggregate_attention(attention_store, res, from_where, True, select)
|
332 |
+
images = []
|
333 |
+
for i in range(len(tokens)):
|
334 |
+
image = attention_maps[:, :, i]
|
335 |
+
image = 255 * image / image.max()
|
336 |
+
image = image.unsqueeze(-1).expand(*image.shape, 3)
|
337 |
+
image = image.numpy().astype(np.uint8)
|
338 |
+
image = np.array(Image.fromarray(image).resize((256, 256)))
|
339 |
+
image = ptp_utils.text_under_image(image, decoder(int(tokens[i])))
|
340 |
+
images.append(image)
|
341 |
+
ptp_utils.view_images(np.stack(images, axis=0))
|
342 |
+
|
343 |
+
|
344 |
+
class NullInversion:
|
345 |
+
|
346 |
+
def prev_step(self, model_output: Union[torch.FloatTensor, np.ndarray], timestep: int, sample: Union[torch.FloatTensor, np.ndarray]):
|
347 |
+
prev_timestep = timestep - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps
|
348 |
+
alpha_prod_t = self.scheduler.alphas_cumprod[timestep]
|
349 |
+
alpha_prod_t_prev = self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod
|
350 |
+
beta_prod_t = 1 - alpha_prod_t
|
351 |
+
pred_original_sample = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5
|
352 |
+
pred_sample_direction = (1 - alpha_prod_t_prev) ** 0.5 * model_output
|
353 |
+
prev_sample = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction
|
354 |
+
return prev_sample
|
355 |
+
|
356 |
+
def next_step(self, model_output: Union[torch.FloatTensor, np.ndarray], timestep: int, sample: Union[torch.FloatTensor, np.ndarray]):
|
357 |
+
timestep, next_timestep = min(timestep - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps, 999), timestep
|
358 |
+
alpha_prod_t = self.scheduler.alphas_cumprod[timestep] if timestep >= 0 else self.scheduler.final_alpha_cumprod
|
359 |
+
alpha_prod_t_next = self.scheduler.alphas_cumprod[next_timestep]
|
360 |
+
beta_prod_t = 1 - alpha_prod_t
|
361 |
+
next_original_sample = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5
|
362 |
+
next_sample_direction = (1 - alpha_prod_t_next) ** 0.5 * model_output
|
363 |
+
next_sample = alpha_prod_t_next ** 0.5 * next_original_sample + next_sample_direction
|
364 |
+
return next_sample
|
365 |
+
|
366 |
+
def get_noise_pred_single(self, latents, t, context, normal_infer=True):
|
367 |
+
noise_pred = self.model.unet(latents, t, encoder_hidden_states=context, normal_infer=normal_infer)["sample"]
|
368 |
+
return noise_pred
|
369 |
+
|
370 |
+
def get_noise_pred(self, latents, t, is_forward=True, context=None, normal_infer=True):
|
371 |
+
latents_input = torch.cat([latents] * 2)
|
372 |
+
if context is None:
|
373 |
+
context = self.context
|
374 |
+
guidance_scale = 1 if is_forward else self.guidance_scale
|
375 |
+
noise_pred = self.model.unet(latents_input, t, encoder_hidden_states=context, normal_infer=normal_infer)["sample"]
|
376 |
+
noise_pred_uncond, noise_prediction_text = noise_pred.chunk(2)
|
377 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_prediction_text - noise_pred_uncond)
|
378 |
+
if is_forward:
|
379 |
+
latents = self.next_step(noise_pred, t, latents)
|
380 |
+
else:
|
381 |
+
latents = self.prev_step(noise_pred, t, latents)
|
382 |
+
return latents
|
383 |
+
|
384 |
+
@torch.no_grad()
|
385 |
+
def latent2image(self, latents, return_type='np'):
|
386 |
+
latents = 1 / 0.18215 * latents.detach()
|
387 |
+
image = self.model.vae.decode(latents)['sample']
|
388 |
+
if return_type == 'np':
|
389 |
+
image = (image / 2 + 0.5).clamp(0, 1)
|
390 |
+
image = image.cpu().permute(0, 2, 3, 1).numpy()[0]
|
391 |
+
image = (image * 255).astype(np.uint8)
|
392 |
+
return image
|
393 |
+
|
394 |
+
@torch.no_grad()
|
395 |
+
def image2latent(self, image):
|
396 |
+
with torch.no_grad():
|
397 |
+
if type(image) is Image:
|
398 |
+
image = np.array(image)
|
399 |
+
if type(image) is torch.Tensor and image.dim() == 4:
|
400 |
+
latents = image
|
401 |
+
else:
|
402 |
+
image = torch.from_numpy(image).float() / 127.5 - 1
|
403 |
+
image = image.permute(2, 0, 1).unsqueeze(0).to(device)
|
404 |
+
latents = self.model.vae.encode(image)['latent_dist'].mean
|
405 |
+
latents = latents * 0.18215
|
406 |
+
return latents
|
407 |
+
|
408 |
+
@torch.no_grad()
|
409 |
+
def init_prompt(self, prompt: str):
|
410 |
+
uncond_input = self.model.tokenizer(
|
411 |
+
[""], padding="max_length", max_length=self.model.tokenizer.model_max_length,
|
412 |
+
return_tensors="pt"
|
413 |
+
)
|
414 |
+
uncond_embeddings = self.model.text_encoder(uncond_input.input_ids.to(self.model.device))[0]
|
415 |
+
text_input = self.model.tokenizer(
|
416 |
+
[prompt],
|
417 |
+
padding="max_length",
|
418 |
+
max_length=self.model.tokenizer.model_max_length,
|
419 |
+
truncation=True,
|
420 |
+
return_tensors="pt",
|
421 |
+
)
|
422 |
+
# (1, 77, 768)
|
423 |
+
text_embeddings = self.model.text_encoder(text_input.input_ids.to(self.model.device))[0]
|
424 |
+
# (2, 77, 768)
|
425 |
+
self.context = torch.cat([uncond_embeddings, text_embeddings])
|
426 |
+
self.prompt = prompt
|
427 |
+
|
428 |
+
@torch.no_grad()
|
429 |
+
def ddim_loop(self, latent):
|
430 |
+
uncond_embeddings, cond_embeddings = self.context.chunk(2)
|
431 |
+
cond = cond_embeddings if self.null_inv_with_prompt else uncond_embeddings
|
432 |
+
all_latent = [latent]
|
433 |
+
latent = latent.clone().detach()
|
434 |
+
for i in range(NUM_DDIM_STEPS):
|
435 |
+
t = self.model.scheduler.timesteps[len(self.model.scheduler.timesteps) - i - 1]
|
436 |
+
noise_pred = self.get_noise_pred_single(latent, t, cond, normal_infer=True)
|
437 |
+
latent = self.next_step(noise_pred, t, latent)
|
438 |
+
all_latent.append(latent)
|
439 |
+
return all_latent
|
440 |
+
|
441 |
+
@property
|
442 |
+
def scheduler(self):
|
443 |
+
return self.model.scheduler
|
444 |
+
|
445 |
+
@torch.no_grad()
|
446 |
+
def ddim_inversion(self, latent):
|
447 |
+
ddim_latents = self.ddim_loop(latent)
|
448 |
+
return ddim_latents
|
449 |
+
|
450 |
+
def null_optimization(self, latents, null_inner_steps, epsilon, null_base_lr=1e-2):
|
451 |
+
uncond_embeddings, cond_embeddings = self.context.chunk(2)
|
452 |
+
uncond_embeddings_list = []
|
453 |
+
latent_cur = latents[-1]
|
454 |
+
bar = tqdm(total=null_inner_steps * NUM_DDIM_STEPS)
|
455 |
+
for i in range(NUM_DDIM_STEPS):
|
456 |
+
uncond_embeddings = uncond_embeddings.clone().detach()
|
457 |
+
uncond_embeddings.requires_grad = True
|
458 |
+
optimizer = Adam([uncond_embeddings], lr=null_base_lr * (1. - i / 100.))
|
459 |
+
latent_prev = latents[len(latents) - i - 2]
|
460 |
+
t = self.model.scheduler.timesteps[i]
|
461 |
+
with torch.no_grad():
|
462 |
+
noise_pred_cond = self.get_noise_pred_single(latent_cur, t, cond_embeddings, normal_infer=self.null_normal_infer)
|
463 |
+
for j in range(null_inner_steps):
|
464 |
+
noise_pred_uncond = self.get_noise_pred_single(latent_cur, t, uncond_embeddings, normal_infer=self.null_normal_infer)
|
465 |
+
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_cond - noise_pred_uncond)
|
466 |
+
latents_prev_rec = self.prev_step(noise_pred, t, latent_cur)
|
467 |
+
loss = nnf.mse_loss(latents_prev_rec, latent_prev)
|
468 |
+
optimizer.zero_grad()
|
469 |
+
loss.backward()
|
470 |
+
optimizer.step()
|
471 |
+
assert not torch.isnan(uncond_embeddings.abs().mean())
|
472 |
+
loss_item = loss.item()
|
473 |
+
bar.update()
|
474 |
+
if loss_item < epsilon + i * 2e-5:
|
475 |
+
break
|
476 |
+
for j in range(j + 1, null_inner_steps):
|
477 |
+
bar.update()
|
478 |
+
uncond_embeddings_list.append(uncond_embeddings[:1].detach())
|
479 |
+
with torch.no_grad():
|
480 |
+
context = torch.cat([uncond_embeddings, cond_embeddings])
|
481 |
+
latent_cur = self.get_noise_pred(latent_cur, t, False, context, normal_infer=self.null_normal_infer)
|
482 |
+
bar.close()
|
483 |
+
return uncond_embeddings_list
|
484 |
+
|
485 |
+
def invert(self, latents: torch.Tensor, prompt: str, null_inner_steps=10, early_stop_epsilon=1e-5, verbose=False, null_base_lr=1e-2):
|
486 |
+
self.init_prompt(prompt)
|
487 |
+
if verbose:
|
488 |
+
print("DDIM inversion...")
|
489 |
+
ddim_latents = self.ddim_inversion(latents.to(torch.float32))
|
490 |
+
if verbose:
|
491 |
+
print("Null-text optimization...")
|
492 |
+
uncond_embeddings = self.null_optimization(ddim_latents, null_inner_steps, early_stop_epsilon, null_base_lr=null_base_lr)
|
493 |
+
return ddim_latents[-1], uncond_embeddings
|
494 |
+
|
495 |
+
|
496 |
+
def __init__(self, model, guidance_scale, null_inv_with_prompt, null_normal_infer=True):
|
497 |
+
self.null_normal_infer = null_normal_infer
|
498 |
+
self.null_inv_with_prompt = null_inv_with_prompt
|
499 |
+
self.guidance_scale = guidance_scale
|
500 |
+
self.model = model
|
501 |
+
self.tokenizer = self.model.tokenizer
|
502 |
+
self.model.scheduler.set_timesteps(NUM_DDIM_STEPS)
|
503 |
+
self.prompt = None
|
504 |
+
self.context = None
|
vid2vid_zero/p2p/p2p_stable.py
ADDED
@@ -0,0 +1,242 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 Google LLC
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
from typing import Optional, Union, Tuple, List, Callable, Dict
|
16 |
+
import torch
|
17 |
+
import torch.nn.functional as nnf
|
18 |
+
import numpy as np
|
19 |
+
import abc
|
20 |
+
from . import ptp_utils
|
21 |
+
from . import seq_aligner
|
22 |
+
from transformers import CLIPTextModel, CLIPTokenizer
|
23 |
+
|
24 |
+
pretrained_model_path = "checkpoints/stable-diffusion-v1-4/"
|
25 |
+
ldm_stable = None
|
26 |
+
tokenizer = CLIPTokenizer.from_pretrained(pretrained_model_path, subfolder="tokenizer")
|
27 |
+
|
28 |
+
LOW_RESOURCE = False
|
29 |
+
NUM_DIFFUSION_STEPS = 50
|
30 |
+
GUIDANCE_SCALE = 7.5
|
31 |
+
MAX_NUM_WORDS = 77
|
32 |
+
device = torch.device('cuda')
|
33 |
+
|
34 |
+
|
35 |
+
class LocalBlend:
|
36 |
+
|
37 |
+
def __call__(self, x_t, attention_store):
|
38 |
+
k = 1
|
39 |
+
maps = attention_store["down_cross"][2:4] + attention_store["up_cross"][:3]
|
40 |
+
maps = [item.reshape(self.alpha_layers.shape[0], -1, 1, 16, 16, MAX_NUM_WORDS) for item in maps]
|
41 |
+
maps = torch.cat(maps, dim=1)
|
42 |
+
maps = (maps * self.alpha_layers).sum(-1).mean(1)
|
43 |
+
mask = nnf.max_pool2d(maps, (k * 2 + 1, k * 2 +1), (1, 1), padding=(k, k))
|
44 |
+
mask = nnf.interpolate(mask, size=(x_t.shape[2:]))
|
45 |
+
mask = mask / mask.max(2, keepdims=True)[0].max(3, keepdims=True)[0]
|
46 |
+
mask = mask.gt(self.threshold)
|
47 |
+
mask = (mask[:1] + mask[1:]).float()
|
48 |
+
x_t = x_t[:1] + mask * (x_t - x_t[:1])
|
49 |
+
return x_t
|
50 |
+
|
51 |
+
# def __init__(self, prompts: List[str], words: [List[List[str]]], threshold=.3):
|
52 |
+
def __init__(self, prompts: List[str], words: List[List[str]], threshold=.3):
|
53 |
+
alpha_layers = torch.zeros(len(prompts), 1, 1, 1, 1, MAX_NUM_WORDS)
|
54 |
+
for i, (prompt, words_) in enumerate(zip(prompts, words)):
|
55 |
+
if type(words_) is str:
|
56 |
+
words_ = [words_]
|
57 |
+
for word in words_:
|
58 |
+
ind = ptp_utils.get_word_inds(prompt, word, tokenizer)
|
59 |
+
alpha_layers[i, :, :, :, :, ind] = 1
|
60 |
+
self.alpha_layers = alpha_layers.to(device)
|
61 |
+
self.threshold = threshold
|
62 |
+
|
63 |
+
|
64 |
+
class AttentionControl(abc.ABC):
|
65 |
+
|
66 |
+
def step_callback(self, x_t):
|
67 |
+
return x_t
|
68 |
+
|
69 |
+
def between_steps(self):
|
70 |
+
return
|
71 |
+
|
72 |
+
@property
|
73 |
+
def num_uncond_att_layers(self):
|
74 |
+
return self.num_att_layers if LOW_RESOURCE else 0
|
75 |
+
|
76 |
+
@abc.abstractmethod
|
77 |
+
def forward (self, attn, is_cross: bool, place_in_unet: str):
|
78 |
+
raise NotImplementedError
|
79 |
+
|
80 |
+
def __call__(self, attn, is_cross: bool, place_in_unet: str):
|
81 |
+
if self.cur_att_layer >= self.num_uncond_att_layers:
|
82 |
+
if LOW_RESOURCE:
|
83 |
+
attn = self.forward(attn, is_cross, place_in_unet)
|
84 |
+
else:
|
85 |
+
h = attn.shape[0]
|
86 |
+
attn[h // 2:] = self.forward(attn[h // 2:], is_cross, place_in_unet)
|
87 |
+
self.cur_att_layer += 1
|
88 |
+
if self.cur_att_layer == self.num_att_layers + self.num_uncond_att_layers:
|
89 |
+
self.cur_att_layer = 0
|
90 |
+
self.cur_step += 1
|
91 |
+
self.between_steps()
|
92 |
+
return attn
|
93 |
+
|
94 |
+
def reset(self):
|
95 |
+
self.cur_step = 0
|
96 |
+
self.cur_att_layer = 0
|
97 |
+
|
98 |
+
def __init__(self):
|
99 |
+
self.cur_step = 0
|
100 |
+
self.num_att_layers = -1
|
101 |
+
self.cur_att_layer = 0
|
102 |
+
|
103 |
+
class EmptyControl(AttentionControl):
|
104 |
+
|
105 |
+
def forward (self, attn, is_cross: bool, place_in_unet: str):
|
106 |
+
return attn
|
107 |
+
|
108 |
+
|
109 |
+
class AttentionStore(AttentionControl):
|
110 |
+
|
111 |
+
@staticmethod
|
112 |
+
def get_empty_store():
|
113 |
+
return {"down_cross": [], "mid_cross": [], "up_cross": [],
|
114 |
+
"down_self": [], "mid_self": [], "up_self": []}
|
115 |
+
|
116 |
+
def forward(self, attn, is_cross: bool, place_in_unet: str):
|
117 |
+
key = f"{place_in_unet}_{'cross' if is_cross else 'self'}"
|
118 |
+
if attn.shape[1] <= 32 ** 2: # avoid memory overhead
|
119 |
+
self.step_store[key].append(attn)
|
120 |
+
return attn
|
121 |
+
|
122 |
+
def between_steps(self):
|
123 |
+
if len(self.attention_store) == 0:
|
124 |
+
self.attention_store = self.step_store
|
125 |
+
else:
|
126 |
+
for key in self.attention_store:
|
127 |
+
for i in range(len(self.attention_store[key])):
|
128 |
+
self.attention_store[key][i] += self.step_store[key][i]
|
129 |
+
self.step_store = self.get_empty_store()
|
130 |
+
|
131 |
+
def get_average_attention(self):
|
132 |
+
average_attention = {key: [item / self.cur_step for item in self.attention_store[key]] for key in self.attention_store}
|
133 |
+
return average_attention
|
134 |
+
|
135 |
+
|
136 |
+
def reset(self):
|
137 |
+
super(AttentionStore, self).reset()
|
138 |
+
self.step_store = self.get_empty_store()
|
139 |
+
self.attention_store = {}
|
140 |
+
|
141 |
+
def __init__(self):
|
142 |
+
super(AttentionStore, self).__init__()
|
143 |
+
self.step_store = self.get_empty_store()
|
144 |
+
self.attention_store = {}
|
145 |
+
|
146 |
+
|
147 |
+
class AttentionControlEdit(AttentionStore, abc.ABC):
|
148 |
+
|
149 |
+
def step_callback(self, x_t):
|
150 |
+
if self.local_blend is not None:
|
151 |
+
x_t = self.local_blend(x_t, self.attention_store)
|
152 |
+
return x_t
|
153 |
+
|
154 |
+
def replace_self_attention(self, attn_base, att_replace):
|
155 |
+
if att_replace.shape[2] <= 16 ** 2:
|
156 |
+
return attn_base.unsqueeze(0).expand(att_replace.shape[0], *attn_base.shape)
|
157 |
+
else:
|
158 |
+
return att_replace
|
159 |
+
|
160 |
+
@abc.abstractmethod
|
161 |
+
def replace_cross_attention(self, attn_base, att_replace):
|
162 |
+
raise NotImplementedError
|
163 |
+
|
164 |
+
def forward(self, attn, is_cross: bool, place_in_unet: str):
|
165 |
+
super(AttentionControlEdit, self).forward(attn, is_cross, place_in_unet)
|
166 |
+
if is_cross or (self.num_self_replace[0] <= self.cur_step < self.num_self_replace[1]):
|
167 |
+
h = attn.shape[0] // (self.batch_size)
|
168 |
+
attn = attn.reshape(self.batch_size, h, *attn.shape[1:])
|
169 |
+
attn_base, attn_repalce = attn[0], attn[1:]
|
170 |
+
if is_cross:
|
171 |
+
alpha_words = self.cross_replace_alpha[self.cur_step]
|
172 |
+
attn_repalce_new = self.replace_cross_attention(attn_base, attn_repalce) * alpha_words + (1 - alpha_words) * attn_repalce
|
173 |
+
attn[1:] = attn_repalce_new
|
174 |
+
else:
|
175 |
+
attn[1:] = self.replace_self_attention(attn_base, attn_repalce)
|
176 |
+
attn = attn.reshape(self.batch_size * h, *attn.shape[2:])
|
177 |
+
return attn
|
178 |
+
|
179 |
+
def __init__(self, prompts, num_steps: int,
|
180 |
+
cross_replace_steps: Union[float, Tuple[float, float], Dict[str, Tuple[float, float]]],
|
181 |
+
self_replace_steps: Union[float, Tuple[float, float]],
|
182 |
+
local_blend: Optional[LocalBlend]):
|
183 |
+
super(AttentionControlEdit, self).__init__()
|
184 |
+
self.batch_size = len(prompts)
|
185 |
+
self.cross_replace_alpha = ptp_utils.get_time_words_attention_alpha(prompts, num_steps, cross_replace_steps, tokenizer).to(device)
|
186 |
+
if type(self_replace_steps) is float:
|
187 |
+
self_replace_steps = 0, self_replace_steps
|
188 |
+
self.num_self_replace = int(num_steps * self_replace_steps[0]), int(num_steps * self_replace_steps[1])
|
189 |
+
self.local_blend = local_blend
|
190 |
+
|
191 |
+
|
192 |
+
class AttentionReplace(AttentionControlEdit):
|
193 |
+
|
194 |
+
def replace_cross_attention(self, attn_base, att_replace):
|
195 |
+
return torch.einsum('hpw,bwn->bhpn', attn_base, self.mapper)
|
196 |
+
|
197 |
+
def __init__(self, prompts, num_steps: int, cross_replace_steps: float, self_replace_steps: float,
|
198 |
+
local_blend: Optional[LocalBlend] = None):
|
199 |
+
super(AttentionReplace, self).__init__(prompts, num_steps, cross_replace_steps, self_replace_steps, local_blend)
|
200 |
+
self.mapper = seq_aligner.get_replacement_mapper(prompts, tokenizer).to(device)
|
201 |
+
|
202 |
+
|
203 |
+
class AttentionRefine(AttentionControlEdit):
|
204 |
+
|
205 |
+
def replace_cross_attention(self, attn_base, att_replace):
|
206 |
+
attn_base_replace = attn_base[:, :, self.mapper].permute(2, 0, 1, 3)
|
207 |
+
attn_replace = attn_base_replace * self.alphas + att_replace * (1 - self.alphas)
|
208 |
+
return attn_replace
|
209 |
+
|
210 |
+
def __init__(self, prompts, num_steps: int, cross_replace_steps: float, self_replace_steps: float,
|
211 |
+
local_blend: Optional[LocalBlend] = None):
|
212 |
+
super(AttentionRefine, self).__init__(prompts, num_steps, cross_replace_steps, self_replace_steps, local_blend)
|
213 |
+
self.mapper, alphas = seq_aligner.get_refinement_mapper(prompts, tokenizer)
|
214 |
+
self.mapper, alphas = self.mapper.to(device), alphas.to(device)
|
215 |
+
self.alphas = alphas.reshape(alphas.shape[0], 1, 1, alphas.shape[1])
|
216 |
+
|
217 |
+
|
218 |
+
class AttentionReweight(AttentionControlEdit):
|
219 |
+
|
220 |
+
def replace_cross_attention(self, attn_base, att_replace):
|
221 |
+
if self.prev_controller is not None:
|
222 |
+
attn_base = self.prev_controller.replace_cross_attention(attn_base, att_replace)
|
223 |
+
attn_replace = attn_base[None, :, :, :] * self.equalizer[:, None, None, :]
|
224 |
+
return attn_replace
|
225 |
+
|
226 |
+
def __init__(self, prompts, num_steps: int, cross_replace_steps: float, self_replace_steps: float, equalizer,
|
227 |
+
local_blend: Optional[LocalBlend] = None, controller: Optional[AttentionControlEdit] = None):
|
228 |
+
super(AttentionReweight, self).__init__(prompts, num_steps, cross_replace_steps, self_replace_steps, local_blend)
|
229 |
+
self.equalizer = equalizer.to(device)
|
230 |
+
self.prev_controller = controller
|
231 |
+
|
232 |
+
|
233 |
+
def get_equalizer(text: str, word_select: Union[int, Tuple[int, ...]], values: Union[List[float],
|
234 |
+
Tuple[float, ...]]):
|
235 |
+
if type(word_select) is int or type(word_select) is str:
|
236 |
+
word_select = (word_select,)
|
237 |
+
equalizer = torch.ones(len(values), 77)
|
238 |
+
values = torch.tensor(values, dtype=torch.float32)
|
239 |
+
for word in word_select:
|
240 |
+
inds = ptp_utils.get_word_inds(text, word, tokenizer)
|
241 |
+
equalizer[:, inds] = values
|
242 |
+
return equalizer
|
vid2vid_zero/p2p/ptp_utils.py
ADDED
@@ -0,0 +1,347 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 Google LLC
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import numpy as np
|
16 |
+
import torch
|
17 |
+
from PIL import Image, ImageDraw, ImageFont
|
18 |
+
import cv2
|
19 |
+
from typing import Optional, Union, Tuple, List, Callable, Dict
|
20 |
+
from IPython.display import display
|
21 |
+
from tqdm import tqdm
|
22 |
+
import torch.nn.functional as F
|
23 |
+
|
24 |
+
|
25 |
+
def text_under_image(image: np.ndarray, text: str, text_color: Tuple[int, int, int] = (0, 0, 0)):
|
26 |
+
h, w, c = image.shape
|
27 |
+
offset = int(h * .2)
|
28 |
+
img = np.ones((h + offset, w, c), dtype=np.uint8) * 255
|
29 |
+
font = cv2.FONT_HERSHEY_SIMPLEX
|
30 |
+
# font = ImageFont.truetype("/usr/share/fonts/truetype/noto/NotoMono-Regular.ttf", font_size)
|
31 |
+
img[:h] = image
|
32 |
+
textsize = cv2.getTextSize(text, font, 1, 2)[0]
|
33 |
+
text_x, text_y = (w - textsize[0]) // 2, h + offset - textsize[1] // 2
|
34 |
+
cv2.putText(img, text, (text_x, text_y ), font, 1, text_color, 2)
|
35 |
+
return img
|
36 |
+
|
37 |
+
|
38 |
+
def view_images(images, num_rows=1, offset_ratio=0.02):
|
39 |
+
if type(images) is list:
|
40 |
+
num_empty = len(images) % num_rows
|
41 |
+
elif images.ndim == 4:
|
42 |
+
num_empty = images.shape[0] % num_rows
|
43 |
+
else:
|
44 |
+
images = [images]
|
45 |
+
num_empty = 0
|
46 |
+
|
47 |
+
empty_images = np.ones(images[0].shape, dtype=np.uint8) * 255
|
48 |
+
images = [image.astype(np.uint8) for image in images] + [empty_images] * num_empty
|
49 |
+
num_items = len(images)
|
50 |
+
|
51 |
+
h, w, c = images[0].shape
|
52 |
+
offset = int(h * offset_ratio)
|
53 |
+
num_cols = num_items // num_rows
|
54 |
+
image_ = np.ones((h * num_rows + offset * (num_rows - 1),
|
55 |
+
w * num_cols + offset * (num_cols - 1), 3), dtype=np.uint8) * 255
|
56 |
+
for i in range(num_rows):
|
57 |
+
for j in range(num_cols):
|
58 |
+
image_[i * (h + offset): i * (h + offset) + h:, j * (w + offset): j * (w + offset) + w] = images[
|
59 |
+
i * num_cols + j]
|
60 |
+
|
61 |
+
pil_img = Image.fromarray(image_)
|
62 |
+
display(pil_img)
|
63 |
+
|
64 |
+
|
65 |
+
def diffusion_step(model, controller, latents, context, t, guidance_scale, low_resource=False):
|
66 |
+
if low_resource:
|
67 |
+
noise_pred_uncond = model.unet(latents, t, encoder_hidden_states=context[0])["sample"]
|
68 |
+
noise_prediction_text = model.unet(latents, t, encoder_hidden_states=context[1])["sample"]
|
69 |
+
else:
|
70 |
+
latents_input = torch.cat([latents] * 2)
|
71 |
+
noise_pred = model.unet(latents_input, t, encoder_hidden_states=context)["sample"]
|
72 |
+
noise_pred_uncond, noise_prediction_text = noise_pred.chunk(2)
|
73 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_prediction_text - noise_pred_uncond)
|
74 |
+
latents = model.scheduler.step(noise_pred, t, latents)["prev_sample"]
|
75 |
+
latents = controller.step_callback(latents)
|
76 |
+
return latents
|
77 |
+
|
78 |
+
|
79 |
+
def latent2image(vae, latents):
|
80 |
+
latents = 1 / 0.18215 * latents
|
81 |
+
image = vae.decode(latents)['sample']
|
82 |
+
image = (image / 2 + 0.5).clamp(0, 1)
|
83 |
+
image = image.cpu().permute(0, 2, 3, 1).numpy()
|
84 |
+
image = (image * 255).astype(np.uint8)
|
85 |
+
return image
|
86 |
+
|
87 |
+
|
88 |
+
def init_latent(latent, model, height, width, generator, batch_size):
|
89 |
+
if latent is None:
|
90 |
+
latent = torch.randn(
|
91 |
+
(1, model.unet.in_channels, height // 8, width // 8),
|
92 |
+
generator=generator,
|
93 |
+
)
|
94 |
+
latents = latent.expand(batch_size, model.unet.in_channels, height // 8, width // 8).to(model.device)
|
95 |
+
return latent, latents
|
96 |
+
|
97 |
+
|
98 |
+
@torch.no_grad()
|
99 |
+
def text2image_ldm(
|
100 |
+
model,
|
101 |
+
prompt: List[str],
|
102 |
+
controller,
|
103 |
+
num_inference_steps: int = 50,
|
104 |
+
guidance_scale: Optional[float] = 7.,
|
105 |
+
generator: Optional[torch.Generator] = None,
|
106 |
+
latent: Optional[torch.FloatTensor] = None,
|
107 |
+
):
|
108 |
+
register_attention_control(model, controller)
|
109 |
+
height = width = 256
|
110 |
+
batch_size = len(prompt)
|
111 |
+
|
112 |
+
uncond_input = model.tokenizer([""] * batch_size, padding="max_length", max_length=77, return_tensors="pt")
|
113 |
+
uncond_embeddings = model.bert(uncond_input.input_ids.to(model.device))[0]
|
114 |
+
|
115 |
+
text_input = model.tokenizer(prompt, padding="max_length", max_length=77, return_tensors="pt")
|
116 |
+
text_embeddings = model.bert(text_input.input_ids.to(model.device))[0]
|
117 |
+
latent, latents = init_latent(latent, model, height, width, generator, batch_size)
|
118 |
+
context = torch.cat([uncond_embeddings, text_embeddings])
|
119 |
+
|
120 |
+
model.scheduler.set_timesteps(num_inference_steps)
|
121 |
+
for t in tqdm(model.scheduler.timesteps):
|
122 |
+
latents = diffusion_step(model, controller, latents, context, t, guidance_scale)
|
123 |
+
|
124 |
+
image = latent2image(model.vqvae, latents)
|
125 |
+
|
126 |
+
return image, latent
|
127 |
+
|
128 |
+
|
129 |
+
@torch.no_grad()
|
130 |
+
def text2image_ldm_stable(
|
131 |
+
model,
|
132 |
+
prompt: List[str],
|
133 |
+
controller,
|
134 |
+
num_inference_steps: int = 50,
|
135 |
+
guidance_scale: float = 7.5,
|
136 |
+
generator: Optional[torch.Generator] = None,
|
137 |
+
latent: Optional[torch.FloatTensor] = None,
|
138 |
+
low_resource: bool = False,
|
139 |
+
):
|
140 |
+
register_attention_control(model, controller)
|
141 |
+
height = width = 512
|
142 |
+
batch_size = len(prompt)
|
143 |
+
|
144 |
+
text_input = model.tokenizer(
|
145 |
+
prompt,
|
146 |
+
padding="max_length",
|
147 |
+
max_length=model.tokenizer.model_max_length,
|
148 |
+
truncation=True,
|
149 |
+
return_tensors="pt",
|
150 |
+
)
|
151 |
+
text_embeddings = model.text_encoder(text_input.input_ids.to(model.device))[0]
|
152 |
+
max_length = text_input.input_ids.shape[-1]
|
153 |
+
uncond_input = model.tokenizer(
|
154 |
+
[""] * batch_size, padding="max_length", max_length=max_length, return_tensors="pt"
|
155 |
+
)
|
156 |
+
uncond_embeddings = model.text_encoder(uncond_input.input_ids.to(model.device))[0]
|
157 |
+
|
158 |
+
context = [uncond_embeddings, text_embeddings]
|
159 |
+
if not low_resource:
|
160 |
+
context = torch.cat(context)
|
161 |
+
latent, latents = init_latent(latent, model, height, width, generator, batch_size)
|
162 |
+
|
163 |
+
# set timesteps
|
164 |
+
extra_set_kwargs = {"offset": 1}
|
165 |
+
model.scheduler.set_timesteps(num_inference_steps, **extra_set_kwargs)
|
166 |
+
for t in tqdm(model.scheduler.timesteps):
|
167 |
+
latents = diffusion_step(model, controller, latents, context, t, guidance_scale, low_resource)
|
168 |
+
|
169 |
+
image = latent2image(model.vae, latents)
|
170 |
+
|
171 |
+
return image, latent
|
172 |
+
|
173 |
+
|
174 |
+
def register_attention_control(model, controller):
|
175 |
+
|
176 |
+
def ca_forward(self, place_in_unet):
|
177 |
+
def forward(hidden_states, encoder_hidden_states=None, attention_mask=None):
|
178 |
+
batch_size, sequence_length, _ = hidden_states.shape
|
179 |
+
|
180 |
+
is_cross = encoder_hidden_states is not None
|
181 |
+
encoder_hidden_states = encoder_hidden_states
|
182 |
+
|
183 |
+
if self.group_norm is not None:
|
184 |
+
hidden_states = self.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
185 |
+
|
186 |
+
query = self.to_q(hidden_states)
|
187 |
+
# dim = query.shape[-1]
|
188 |
+
query = self.reshape_heads_to_batch_dim(query)
|
189 |
+
|
190 |
+
if self.added_kv_proj_dim is not None:
|
191 |
+
key = self.to_k(hidden_states)
|
192 |
+
value = self.to_v(hidden_states)
|
193 |
+
encoder_hidden_states_key_proj = self.add_k_proj(encoder_hidden_states)
|
194 |
+
encoder_hidden_states_value_proj = self.add_v_proj(encoder_hidden_states)
|
195 |
+
|
196 |
+
key = self.reshape_heads_to_batch_dim(key)
|
197 |
+
value = self.reshape_heads_to_batch_dim(value)
|
198 |
+
encoder_hidden_states_key_proj = self.reshape_heads_to_batch_dim(encoder_hidden_states_key_proj)
|
199 |
+
encoder_hidden_states_value_proj = self.reshape_heads_to_batch_dim(encoder_hidden_states_value_proj)
|
200 |
+
|
201 |
+
key = torch.concat([encoder_hidden_states_key_proj, key], dim=1)
|
202 |
+
value = torch.concat([encoder_hidden_states_value_proj, value], dim=1)
|
203 |
+
else:
|
204 |
+
encoder_hidden_states = encoder_hidden_states if encoder_hidden_states is not None else hidden_states
|
205 |
+
key = self.to_k(encoder_hidden_states)
|
206 |
+
value = self.to_v(encoder_hidden_states)
|
207 |
+
|
208 |
+
key = self.reshape_heads_to_batch_dim(key)
|
209 |
+
value = self.reshape_heads_to_batch_dim(value)
|
210 |
+
|
211 |
+
if attention_mask is not None:
|
212 |
+
if attention_mask.shape[-1] != query.shape[1]:
|
213 |
+
target_length = query.shape[1]
|
214 |
+
attention_mask = F.pad(attention_mask, (0, target_length), value=0.0)
|
215 |
+
attention_mask = attention_mask.repeat_interleave(self.heads, dim=0)
|
216 |
+
|
217 |
+
assert self._slice_size is None or query.shape[0] // self._slice_size == 1
|
218 |
+
|
219 |
+
if self.upcast_attention:
|
220 |
+
query = query.float()
|
221 |
+
key = key.float()
|
222 |
+
|
223 |
+
attention_scores = torch.baddbmm(
|
224 |
+
torch.empty(query.shape[0], query.shape[1], key.shape[1], dtype=query.dtype, device=query.device),
|
225 |
+
query,
|
226 |
+
key.transpose(-1, -2),
|
227 |
+
beta=0,
|
228 |
+
alpha=self.scale,
|
229 |
+
)
|
230 |
+
|
231 |
+
if attention_mask is not None:
|
232 |
+
attention_scores = attention_scores + attention_mask
|
233 |
+
|
234 |
+
if self.upcast_softmax:
|
235 |
+
attention_scores = attention_scores.float()
|
236 |
+
|
237 |
+
attention_probs = attention_scores.softmax(dim=-1)
|
238 |
+
|
239 |
+
# attn control
|
240 |
+
attention_probs = controller(attention_probs, is_cross, place_in_unet)
|
241 |
+
|
242 |
+
# cast back to the original dtype
|
243 |
+
attention_probs = attention_probs.to(value.dtype)
|
244 |
+
|
245 |
+
# compute attention output
|
246 |
+
hidden_states = torch.bmm(attention_probs, value)
|
247 |
+
|
248 |
+
# reshape hidden_states
|
249 |
+
hidden_states = self.reshape_batch_dim_to_heads(hidden_states)
|
250 |
+
|
251 |
+
# linear proj
|
252 |
+
hidden_states = self.to_out[0](hidden_states)
|
253 |
+
|
254 |
+
# dropout
|
255 |
+
hidden_states = self.to_out[1](hidden_states)
|
256 |
+
return hidden_states
|
257 |
+
|
258 |
+
return forward
|
259 |
+
|
260 |
+
class DummyController:
|
261 |
+
|
262 |
+
def __call__(self, *args):
|
263 |
+
return args[0]
|
264 |
+
|
265 |
+
def __init__(self):
|
266 |
+
self.num_att_layers = 0
|
267 |
+
|
268 |
+
if controller is None:
|
269 |
+
controller = DummyController()
|
270 |
+
|
271 |
+
def register_recr(net_, count, place_in_unet):
|
272 |
+
if net_.__class__.__name__ == 'CrossAttention':
|
273 |
+
net_.forward = ca_forward(net_, place_in_unet)
|
274 |
+
return count + 1
|
275 |
+
elif hasattr(net_, 'children'):
|
276 |
+
for net__ in net_.children():
|
277 |
+
count = register_recr(net__, count, place_in_unet)
|
278 |
+
return count
|
279 |
+
|
280 |
+
cross_att_count = 0
|
281 |
+
# sub_nets = model.unet.named_children()
|
282 |
+
# we take unet as the input model
|
283 |
+
sub_nets = model.named_children()
|
284 |
+
for net in sub_nets:
|
285 |
+
if "down" in net[0]:
|
286 |
+
cross_att_count += register_recr(net[1], 0, "down")
|
287 |
+
elif "up" in net[0]:
|
288 |
+
cross_att_count += register_recr(net[1], 0, "up")
|
289 |
+
elif "mid" in net[0]:
|
290 |
+
cross_att_count += register_recr(net[1], 0, "mid")
|
291 |
+
|
292 |
+
controller.num_att_layers = cross_att_count
|
293 |
+
|
294 |
+
|
295 |
+
def get_word_inds(text: str, word_place: int, tokenizer):
|
296 |
+
split_text = text.split(" ")
|
297 |
+
if type(word_place) is str:
|
298 |
+
word_place = [i for i, word in enumerate(split_text) if word_place == word]
|
299 |
+
elif type(word_place) is int:
|
300 |
+
word_place = [word_place]
|
301 |
+
out = []
|
302 |
+
if len(word_place) > 0:
|
303 |
+
words_encode = [tokenizer.decode([item]).strip("#") for item in tokenizer.encode(text)][1:-1]
|
304 |
+
cur_len, ptr = 0, 0
|
305 |
+
|
306 |
+
for i in range(len(words_encode)):
|
307 |
+
cur_len += len(words_encode[i])
|
308 |
+
if ptr in word_place:
|
309 |
+
out.append(i + 1)
|
310 |
+
if cur_len >= len(split_text[ptr]):
|
311 |
+
ptr += 1
|
312 |
+
cur_len = 0
|
313 |
+
return np.array(out)
|
314 |
+
|
315 |
+
|
316 |
+
def update_alpha_time_word(alpha, bounds: Union[float, Tuple[float, float]], prompt_ind: int,
|
317 |
+
word_inds: Optional[torch.Tensor]=None):
|
318 |
+
if type(bounds) is float:
|
319 |
+
bounds = 0, bounds
|
320 |
+
start, end = int(bounds[0] * alpha.shape[0]), int(bounds[1] * alpha.shape[0])
|
321 |
+
if word_inds is None:
|
322 |
+
word_inds = torch.arange(alpha.shape[2])
|
323 |
+
alpha[: start, prompt_ind, word_inds] = 0
|
324 |
+
alpha[start: end, prompt_ind, word_inds] = 1
|
325 |
+
alpha[end:, prompt_ind, word_inds] = 0
|
326 |
+
return alpha
|
327 |
+
|
328 |
+
|
329 |
+
def get_time_words_attention_alpha(prompts, num_steps,
|
330 |
+
cross_replace_steps: Union[float, Dict[str, Tuple[float, float]]],
|
331 |
+
tokenizer, max_num_words=77):
|
332 |
+
if type(cross_replace_steps) is not dict:
|
333 |
+
cross_replace_steps = {"default_": cross_replace_steps}
|
334 |
+
if "default_" not in cross_replace_steps:
|
335 |
+
cross_replace_steps["default_"] = (0., 1.)
|
336 |
+
alpha_time_words = torch.zeros(num_steps + 1, len(prompts) - 1, max_num_words)
|
337 |
+
for i in range(len(prompts) - 1):
|
338 |
+
alpha_time_words = update_alpha_time_word(alpha_time_words, cross_replace_steps["default_"],
|
339 |
+
i)
|
340 |
+
for key, item in cross_replace_steps.items():
|
341 |
+
if key != "default_":
|
342 |
+
inds = [get_word_inds(prompts[i], key, tokenizer) for i in range(1, len(prompts))]
|
343 |
+
for i, ind in enumerate(inds):
|
344 |
+
if len(ind) > 0:
|
345 |
+
alpha_time_words = update_alpha_time_word(alpha_time_words, item, i, ind)
|
346 |
+
alpha_time_words = alpha_time_words.reshape(num_steps + 1, len(prompts) - 1, 1, 1, max_num_words)
|
347 |
+
return alpha_time_words
|
vid2vid_zero/p2p/seq_aligner.py
ADDED
@@ -0,0 +1,197 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 Google LLC
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import torch
|
16 |
+
import numpy as np
|
17 |
+
|
18 |
+
|
19 |
+
class ScoreParams:
|
20 |
+
|
21 |
+
def __init__(self, gap, match, mismatch):
|
22 |
+
self.gap = gap
|
23 |
+
self.match = match
|
24 |
+
self.mismatch = mismatch
|
25 |
+
|
26 |
+
def mis_match_char(self, x, y):
|
27 |
+
if x != y:
|
28 |
+
return self.mismatch
|
29 |
+
else:
|
30 |
+
return self.match
|
31 |
+
|
32 |
+
|
33 |
+
def get_matrix(size_x, size_y, gap):
|
34 |
+
matrix = []
|
35 |
+
for i in range(len(size_x) + 1):
|
36 |
+
sub_matrix = []
|
37 |
+
for j in range(len(size_y) + 1):
|
38 |
+
sub_matrix.append(0)
|
39 |
+
matrix.append(sub_matrix)
|
40 |
+
for j in range(1, len(size_y) + 1):
|
41 |
+
matrix[0][j] = j*gap
|
42 |
+
for i in range(1, len(size_x) + 1):
|
43 |
+
matrix[i][0] = i*gap
|
44 |
+
return matrix
|
45 |
+
|
46 |
+
|
47 |
+
def get_matrix(size_x, size_y, gap):
|
48 |
+
matrix = np.zeros((size_x + 1, size_y + 1), dtype=np.int32)
|
49 |
+
matrix[0, 1:] = (np.arange(size_y) + 1) * gap
|
50 |
+
matrix[1:, 0] = (np.arange(size_x) + 1) * gap
|
51 |
+
return matrix
|
52 |
+
|
53 |
+
|
54 |
+
def get_traceback_matrix(size_x, size_y):
|
55 |
+
matrix = np.zeros((size_x + 1, size_y +1), dtype=np.int32)
|
56 |
+
matrix[0, 1:] = 1
|
57 |
+
matrix[1:, 0] = 2
|
58 |
+
matrix[0, 0] = 4
|
59 |
+
return matrix
|
60 |
+
|
61 |
+
|
62 |
+
def global_align(x, y, score):
|
63 |
+
matrix = get_matrix(len(x), len(y), score.gap)
|
64 |
+
trace_back = get_traceback_matrix(len(x), len(y))
|
65 |
+
for i in range(1, len(x) + 1):
|
66 |
+
for j in range(1, len(y) + 1):
|
67 |
+
left = matrix[i, j - 1] + score.gap
|
68 |
+
up = matrix[i - 1, j] + score.gap
|
69 |
+
diag = matrix[i - 1, j - 1] + score.mis_match_char(x[i - 1], y[j - 1])
|
70 |
+
matrix[i, j] = max(left, up, diag)
|
71 |
+
if matrix[i, j] == left:
|
72 |
+
trace_back[i, j] = 1
|
73 |
+
elif matrix[i, j] == up:
|
74 |
+
trace_back[i, j] = 2
|
75 |
+
else:
|
76 |
+
trace_back[i, j] = 3
|
77 |
+
return matrix, trace_back
|
78 |
+
|
79 |
+
|
80 |
+
def get_aligned_sequences(x, y, trace_back):
|
81 |
+
x_seq = []
|
82 |
+
y_seq = []
|
83 |
+
i = len(x)
|
84 |
+
j = len(y)
|
85 |
+
mapper_y_to_x = []
|
86 |
+
while i > 0 or j > 0:
|
87 |
+
if trace_back[i, j] == 3:
|
88 |
+
x_seq.append(x[i-1])
|
89 |
+
y_seq.append(y[j-1])
|
90 |
+
i = i-1
|
91 |
+
j = j-1
|
92 |
+
mapper_y_to_x.append((j, i))
|
93 |
+
elif trace_back[i][j] == 1:
|
94 |
+
x_seq.append('-')
|
95 |
+
y_seq.append(y[j-1])
|
96 |
+
j = j-1
|
97 |
+
mapper_y_to_x.append((j, -1))
|
98 |
+
elif trace_back[i][j] == 2:
|
99 |
+
x_seq.append(x[i-1])
|
100 |
+
y_seq.append('-')
|
101 |
+
i = i-1
|
102 |
+
elif trace_back[i][j] == 4:
|
103 |
+
break
|
104 |
+
mapper_y_to_x.reverse()
|
105 |
+
return x_seq, y_seq, torch.tensor(mapper_y_to_x, dtype=torch.int64)
|
106 |
+
|
107 |
+
|
108 |
+
def get_mapper(x: str, y: str, tokenizer, max_len=77):
|
109 |
+
x_seq = tokenizer.encode(x)
|
110 |
+
y_seq = tokenizer.encode(y)
|
111 |
+
score = ScoreParams(0, 1, -1)
|
112 |
+
matrix, trace_back = global_align(x_seq, y_seq, score)
|
113 |
+
mapper_base = get_aligned_sequences(x_seq, y_seq, trace_back)[-1]
|
114 |
+
alphas = torch.ones(max_len)
|
115 |
+
alphas[: mapper_base.shape[0]] = mapper_base[:, 1].ne(-1).float()
|
116 |
+
mapper = torch.zeros(max_len, dtype=torch.int64)
|
117 |
+
mapper[:mapper_base.shape[0]] = mapper_base[:, 1]
|
118 |
+
mapper[mapper_base.shape[0]:] = len(y_seq) + torch.arange(max_len - len(y_seq))
|
119 |
+
return mapper, alphas
|
120 |
+
|
121 |
+
|
122 |
+
def get_refinement_mapper(prompts, tokenizer, max_len=77):
|
123 |
+
x_seq = prompts[0]
|
124 |
+
mappers, alphas = [], []
|
125 |
+
for i in range(1, len(prompts)):
|
126 |
+
mapper, alpha = get_mapper(x_seq, prompts[i], tokenizer, max_len)
|
127 |
+
mappers.append(mapper)
|
128 |
+
alphas.append(alpha)
|
129 |
+
return torch.stack(mappers), torch.stack(alphas)
|
130 |
+
|
131 |
+
|
132 |
+
def get_word_inds(text: str, word_place: int, tokenizer):
|
133 |
+
split_text = text.split(" ")
|
134 |
+
if type(word_place) is str:
|
135 |
+
word_place = [i for i, word in enumerate(split_text) if word_place == word]
|
136 |
+
elif type(word_place) is int:
|
137 |
+
word_place = [word_place]
|
138 |
+
out = []
|
139 |
+
if len(word_place) > 0:
|
140 |
+
words_encode = [tokenizer.decode([item]).strip("#") for item in tokenizer.encode(text)][1:-1]
|
141 |
+
cur_len, ptr = 0, 0
|
142 |
+
|
143 |
+
for i in range(len(words_encode)):
|
144 |
+
cur_len += len(words_encode[i])
|
145 |
+
if ptr in word_place:
|
146 |
+
out.append(i + 1)
|
147 |
+
if cur_len >= len(split_text[ptr]):
|
148 |
+
ptr += 1
|
149 |
+
cur_len = 0
|
150 |
+
return np.array(out)
|
151 |
+
|
152 |
+
|
153 |
+
def get_replacement_mapper_(x: str, y: str, tokenizer, max_len=77):
|
154 |
+
words_x = x.split(' ')
|
155 |
+
words_y = y.split(' ')
|
156 |
+
if len(words_x) != len(words_y):
|
157 |
+
raise ValueError(f"attention replacement edit can only be applied on prompts with the same length"
|
158 |
+
f" but prompt A has {len(words_x)} words and prompt B has {len(words_y)} words.")
|
159 |
+
inds_replace = [i for i in range(len(words_y)) if words_y[i] != words_x[i]]
|
160 |
+
inds_source = [get_word_inds(x, i, tokenizer) for i in inds_replace]
|
161 |
+
inds_target = [get_word_inds(y, i, tokenizer) for i in inds_replace]
|
162 |
+
mapper = np.zeros((max_len, max_len))
|
163 |
+
i = j = 0
|
164 |
+
cur_inds = 0
|
165 |
+
while i < max_len and j < max_len:
|
166 |
+
if cur_inds < len(inds_source) and inds_source[cur_inds][0] == i:
|
167 |
+
inds_source_, inds_target_ = inds_source[cur_inds], inds_target[cur_inds]
|
168 |
+
if len(inds_source_) == len(inds_target_):
|
169 |
+
mapper[inds_source_, inds_target_] = 1
|
170 |
+
else:
|
171 |
+
ratio = 1 / len(inds_target_)
|
172 |
+
for i_t in inds_target_:
|
173 |
+
mapper[inds_source_, i_t] = ratio
|
174 |
+
cur_inds += 1
|
175 |
+
i += len(inds_source_)
|
176 |
+
j += len(inds_target_)
|
177 |
+
elif cur_inds < len(inds_source):
|
178 |
+
mapper[i, j] = 1
|
179 |
+
i += 1
|
180 |
+
j += 1
|
181 |
+
else:
|
182 |
+
mapper[j, j] = 1
|
183 |
+
i += 1
|
184 |
+
j += 1
|
185 |
+
|
186 |
+
return torch.from_numpy(mapper).float()
|
187 |
+
|
188 |
+
|
189 |
+
|
190 |
+
def get_replacement_mapper(prompts, tokenizer, max_len=77):
|
191 |
+
x_seq = prompts[0]
|
192 |
+
mappers = []
|
193 |
+
for i in range(1, len(prompts)):
|
194 |
+
mapper = get_replacement_mapper_(x_seq, prompts[i], tokenizer, max_len)
|
195 |
+
mappers.append(mapper)
|
196 |
+
return torch.stack(mappers)
|
197 |
+
|
vid2vid_zero/pipelines/pipeline_vid2vid_zero.py
ADDED
@@ -0,0 +1,541 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import inspect
|
16 |
+
from typing import Callable, List, Optional, Union
|
17 |
+
from dataclasses import dataclass
|
18 |
+
|
19 |
+
import numpy as np
|
20 |
+
import torch
|
21 |
+
|
22 |
+
from diffusers.utils import is_accelerate_available
|
23 |
+
from packaging import version
|
24 |
+
from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer
|
25 |
+
|
26 |
+
from diffusers.configuration_utils import FrozenDict
|
27 |
+
from diffusers.models import AutoencoderKL # UNet2DConditionModel
|
28 |
+
from diffusers.pipeline_utils import DiffusionPipeline
|
29 |
+
from diffusers.schedulers import (
|
30 |
+
DDIMScheduler,
|
31 |
+
DPMSolverMultistepScheduler,
|
32 |
+
EulerAncestralDiscreteScheduler,
|
33 |
+
EulerDiscreteScheduler,
|
34 |
+
LMSDiscreteScheduler,
|
35 |
+
PNDMScheduler,
|
36 |
+
)
|
37 |
+
from diffusers.utils import deprecate, logging, BaseOutput
|
38 |
+
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
|
39 |
+
|
40 |
+
from einops import rearrange
|
41 |
+
|
42 |
+
from ..models.unet_2d_condition import UNet2DConditionModel
|
43 |
+
|
44 |
+
|
45 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
46 |
+
|
47 |
+
|
48 |
+
@dataclass
|
49 |
+
class Vid2VidZeroPipelineOutput(BaseOutput):
|
50 |
+
images: Union[torch.Tensor, np.ndarray]
|
51 |
+
|
52 |
+
|
53 |
+
class Vid2VidZeroPipeline(DiffusionPipeline):
|
54 |
+
r"""
|
55 |
+
Pipeline for text-to-image generation using Stable Diffusion.
|
56 |
+
|
57 |
+
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
|
58 |
+
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
|
59 |
+
|
60 |
+
Args:
|
61 |
+
vae ([`AutoencoderKL`]):
|
62 |
+
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
|
63 |
+
text_encoder ([`CLIPTextModel`]):
|
64 |
+
Frozen text-encoder. Stable Diffusion uses the text portion of
|
65 |
+
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
|
66 |
+
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
|
67 |
+
tokenizer (`CLIPTokenizer`):
|
68 |
+
Tokenizer of class
|
69 |
+
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
|
70 |
+
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
|
71 |
+
scheduler ([`SchedulerMixin`]):
|
72 |
+
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
|
73 |
+
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
|
74 |
+
safety_checker ([`StableDiffusionSafetyChecker`]):
|
75 |
+
Classification module that estimates whether generated images could be considered offensive or harmful.
|
76 |
+
Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details.
|
77 |
+
feature_extractor ([`CLIPFeatureExtractor`]):
|
78 |
+
Model that extracts features from generated images to be used as inputs for the `safety_checker`.
|
79 |
+
"""
|
80 |
+
_optional_components = ["safety_checker", "feature_extractor"]
|
81 |
+
|
82 |
+
def __init__(
|
83 |
+
self,
|
84 |
+
vae: AutoencoderKL,
|
85 |
+
text_encoder: CLIPTextModel,
|
86 |
+
tokenizer: CLIPTokenizer,
|
87 |
+
unet: UNet2DConditionModel,
|
88 |
+
scheduler: Union[
|
89 |
+
DDIMScheduler,
|
90 |
+
PNDMScheduler,
|
91 |
+
LMSDiscreteScheduler,
|
92 |
+
EulerDiscreteScheduler,
|
93 |
+
EulerAncestralDiscreteScheduler,
|
94 |
+
DPMSolverMultistepScheduler,
|
95 |
+
],
|
96 |
+
safety_checker: StableDiffusionSafetyChecker,
|
97 |
+
feature_extractor: CLIPFeatureExtractor,
|
98 |
+
requires_safety_checker: bool = False,
|
99 |
+
):
|
100 |
+
super().__init__()
|
101 |
+
|
102 |
+
if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1:
|
103 |
+
deprecation_message = (
|
104 |
+
f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`"
|
105 |
+
f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure "
|
106 |
+
"to update the config accordingly as leaving `steps_offset` might led to incorrect results"
|
107 |
+
" in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,"
|
108 |
+
" it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`"
|
109 |
+
" file"
|
110 |
+
)
|
111 |
+
deprecate("steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False)
|
112 |
+
new_config = dict(scheduler.config)
|
113 |
+
new_config["steps_offset"] = 1
|
114 |
+
scheduler._internal_dict = FrozenDict(new_config)
|
115 |
+
|
116 |
+
if hasattr(scheduler.config, "clip_sample") and scheduler.config.clip_sample is True:
|
117 |
+
deprecation_message = (
|
118 |
+
f"The configuration file of this scheduler: {scheduler} has not set the configuration `clip_sample`."
|
119 |
+
" `clip_sample` should be set to False in the configuration file. Please make sure to update the"
|
120 |
+
" config accordingly as not setting `clip_sample` in the config might lead to incorrect results in"
|
121 |
+
" future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very"
|
122 |
+
" nice if you could open a Pull request for the `scheduler/scheduler_config.json` file"
|
123 |
+
)
|
124 |
+
deprecate("clip_sample not set", "1.0.0", deprecation_message, standard_warn=False)
|
125 |
+
new_config = dict(scheduler.config)
|
126 |
+
new_config["clip_sample"] = False
|
127 |
+
scheduler._internal_dict = FrozenDict(new_config)
|
128 |
+
|
129 |
+
if safety_checker is None and requires_safety_checker:
|
130 |
+
logger.warning(
|
131 |
+
f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
|
132 |
+
" that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"
|
133 |
+
" results in services or applications open to the public. Both the diffusers team and Hugging Face"
|
134 |
+
" strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
|
135 |
+
" it only for use-cases that involve analyzing network behavior or auditing its results. For more"
|
136 |
+
" information, please have a look at https://github.com/huggingface/diffusers/pull/254 ."
|
137 |
+
)
|
138 |
+
|
139 |
+
if safety_checker is not None and feature_extractor is None:
|
140 |
+
raise ValueError(
|
141 |
+
"Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety"
|
142 |
+
" checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead."
|
143 |
+
)
|
144 |
+
|
145 |
+
is_unet_version_less_0_9_0 = hasattr(unet.config, "_diffusers_version") and version.parse(
|
146 |
+
version.parse(unet.config._diffusers_version).base_version
|
147 |
+
) < version.parse("0.9.0.dev0")
|
148 |
+
is_unet_sample_size_less_64 = hasattr(unet.config, "sample_size") and unet.config.sample_size < 64
|
149 |
+
if is_unet_version_less_0_9_0 and is_unet_sample_size_less_64:
|
150 |
+
deprecation_message = (
|
151 |
+
"The configuration file of the unet has set the default `sample_size` to smaller than"
|
152 |
+
" 64 which seems highly unlikely. If your checkpoint is a fine-tuned version of any of the"
|
153 |
+
" following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-"
|
154 |
+
" CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5"
|
155 |
+
" \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the"
|
156 |
+
" configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`"
|
157 |
+
" in the config might lead to incorrect results in future versions. If you have downloaded this"
|
158 |
+
" checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for"
|
159 |
+
" the `unet/config.json` file"
|
160 |
+
)
|
161 |
+
deprecate("sample_size<64", "1.0.0", deprecation_message, standard_warn=False)
|
162 |
+
new_config = dict(unet.config)
|
163 |
+
new_config["sample_size"] = 64
|
164 |
+
unet._internal_dict = FrozenDict(new_config)
|
165 |
+
|
166 |
+
self.register_modules(
|
167 |
+
vae=vae,
|
168 |
+
text_encoder=text_encoder,
|
169 |
+
tokenizer=tokenizer,
|
170 |
+
unet=unet,
|
171 |
+
scheduler=scheduler,
|
172 |
+
safety_checker=safety_checker,
|
173 |
+
feature_extractor=feature_extractor,
|
174 |
+
)
|
175 |
+
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
176 |
+
self.register_to_config(requires_safety_checker=requires_safety_checker)
|
177 |
+
|
178 |
+
def enable_vae_slicing(self):
|
179 |
+
r"""
|
180 |
+
Enable sliced VAE decoding.
|
181 |
+
|
182 |
+
When this option is enabled, the VAE will split the input tensor in slices to compute decoding in several
|
183 |
+
steps. This is useful to save some memory and allow larger batch sizes.
|
184 |
+
"""
|
185 |
+
self.vae.enable_slicing()
|
186 |
+
|
187 |
+
def disable_vae_slicing(self):
|
188 |
+
r"""
|
189 |
+
Disable sliced VAE decoding. If `enable_vae_slicing` was previously invoked, this method will go back to
|
190 |
+
computing decoding in one step.
|
191 |
+
"""
|
192 |
+
self.vae.disable_slicing()
|
193 |
+
|
194 |
+
def enable_sequential_cpu_offload(self, gpu_id=0):
|
195 |
+
r"""
|
196 |
+
Offloads all models to CPU using accelerate, significantly reducing memory usage. When called, unet,
|
197 |
+
text_encoder, vae and safety checker have their state dicts saved to CPU and then are moved to a
|
198 |
+
`torch.device('meta') and loaded to GPU only when their specific submodule has its `forward` method called.
|
199 |
+
"""
|
200 |
+
if is_accelerate_available():
|
201 |
+
from accelerate import cpu_offload
|
202 |
+
else:
|
203 |
+
raise ImportError("Please install accelerate via `pip install accelerate`")
|
204 |
+
|
205 |
+
device = torch.device(f"cuda:{gpu_id}")
|
206 |
+
|
207 |
+
for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae]:
|
208 |
+
if cpu_offloaded_model is not None:
|
209 |
+
cpu_offload(cpu_offloaded_model, device)
|
210 |
+
|
211 |
+
if self.safety_checker is not None:
|
212 |
+
# TODO(Patrick) - there is currently a bug with cpu offload of nn.Parameter in accelerate
|
213 |
+
# fix by only offloading self.safety_checker for now
|
214 |
+
cpu_offload(self.safety_checker.vision_model, device)
|
215 |
+
|
216 |
+
@property
|
217 |
+
def _execution_device(self):
|
218 |
+
r"""
|
219 |
+
Returns the device on which the pipeline's models will be executed. After calling
|
220 |
+
`pipeline.enable_sequential_cpu_offload()` the execution device can only be inferred from Accelerate's module
|
221 |
+
hooks.
|
222 |
+
"""
|
223 |
+
if self.device != torch.device("meta") or not hasattr(self.unet, "_hf_hook"):
|
224 |
+
return self.device
|
225 |
+
for module in self.unet.modules():
|
226 |
+
if (
|
227 |
+
hasattr(module, "_hf_hook")
|
228 |
+
and hasattr(module._hf_hook, "execution_device")
|
229 |
+
and module._hf_hook.execution_device is not None
|
230 |
+
):
|
231 |
+
return torch.device(module._hf_hook.execution_device)
|
232 |
+
return self.device
|
233 |
+
|
234 |
+
def _encode_prompt(self, prompt, device, num_videos_per_prompt, do_classifier_free_guidance, negative_prompt, uncond_embeddings=None):
|
235 |
+
r"""
|
236 |
+
Encodes the prompt into text encoder hidden states.
|
237 |
+
|
238 |
+
Args:
|
239 |
+
prompt (`str` or `list(int)`):
|
240 |
+
prompt to be encoded
|
241 |
+
device: (`torch.device`):
|
242 |
+
torch device
|
243 |
+
num_images_per_prompt (`int`):
|
244 |
+
number of images that should be generated per prompt
|
245 |
+
do_classifier_free_guidance (`bool`):
|
246 |
+
whether to use classifier free guidance or not
|
247 |
+
negative_prompt (`str` or `List[str]`):
|
248 |
+
The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
|
249 |
+
if `guidance_scale` is less than `1`).
|
250 |
+
"""
|
251 |
+
batch_size = len(prompt) if isinstance(prompt, list) else 1
|
252 |
+
|
253 |
+
text_inputs = self.tokenizer(
|
254 |
+
prompt,
|
255 |
+
padding="max_length",
|
256 |
+
max_length=self.tokenizer.model_max_length,
|
257 |
+
truncation=True,
|
258 |
+
return_tensors="pt",
|
259 |
+
)
|
260 |
+
text_input_ids = text_inputs.input_ids
|
261 |
+
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
|
262 |
+
|
263 |
+
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
|
264 |
+
removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1])
|
265 |
+
logger.warning(
|
266 |
+
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
267 |
+
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
|
268 |
+
)
|
269 |
+
|
270 |
+
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
|
271 |
+
attention_mask = text_inputs.attention_mask.to(device)
|
272 |
+
else:
|
273 |
+
attention_mask = None
|
274 |
+
|
275 |
+
text_embeddings = self.text_encoder(
|
276 |
+
text_input_ids.to(device),
|
277 |
+
attention_mask=attention_mask,
|
278 |
+
)
|
279 |
+
text_embeddings = text_embeddings[0]
|
280 |
+
|
281 |
+
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
282 |
+
# num_videos_per_prompt = 1, thus nothing happens here
|
283 |
+
bs_embed, seq_len, _ = text_embeddings.shape
|
284 |
+
text_embeddings = text_embeddings.repeat(1, num_videos_per_prompt, 1)
|
285 |
+
text_embeddings = text_embeddings.view(bs_embed * num_videos_per_prompt, seq_len, -1)
|
286 |
+
|
287 |
+
# get unconditional embeddings for classifier free guidance
|
288 |
+
if do_classifier_free_guidance:
|
289 |
+
uncond_tokens: List[str]
|
290 |
+
if negative_prompt is None:
|
291 |
+
uncond_tokens = [""] * batch_size
|
292 |
+
elif type(prompt) is not type(negative_prompt):
|
293 |
+
raise TypeError(
|
294 |
+
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
295 |
+
f" {type(prompt)}."
|
296 |
+
)
|
297 |
+
elif isinstance(negative_prompt, str):
|
298 |
+
uncond_tokens = [negative_prompt]
|
299 |
+
elif batch_size != len(negative_prompt):
|
300 |
+
raise ValueError(
|
301 |
+
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
302 |
+
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
303 |
+
" the batch size of `prompt`."
|
304 |
+
)
|
305 |
+
else:
|
306 |
+
uncond_tokens = negative_prompt
|
307 |
+
|
308 |
+
max_length = text_input_ids.shape[-1]
|
309 |
+
uncond_input = self.tokenizer(
|
310 |
+
uncond_tokens,
|
311 |
+
padding="max_length",
|
312 |
+
max_length=max_length,
|
313 |
+
truncation=True,
|
314 |
+
return_tensors="pt",
|
315 |
+
)
|
316 |
+
|
317 |
+
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
|
318 |
+
attention_mask = uncond_input.attention_mask.to(device)
|
319 |
+
else:
|
320 |
+
attention_mask = None
|
321 |
+
|
322 |
+
uncond_embeddings = self.text_encoder(
|
323 |
+
uncond_input.input_ids.to(device),
|
324 |
+
attention_mask=attention_mask,
|
325 |
+
)
|
326 |
+
uncond_embeddings = uncond_embeddings[0]
|
327 |
+
|
328 |
+
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
|
329 |
+
seq_len = uncond_embeddings.shape[1]
|
330 |
+
uncond_embeddings = uncond_embeddings.repeat(1, num_videos_per_prompt, 1)
|
331 |
+
uncond_embeddings = uncond_embeddings.view(batch_size * num_videos_per_prompt, seq_len, -1)
|
332 |
+
|
333 |
+
# For classifier free guidance, we need to do two forward passes.
|
334 |
+
# Here we concatenate the unconditional and text embeddings into a single batch
|
335 |
+
# to avoid doing two forward passes
|
336 |
+
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
|
337 |
+
|
338 |
+
return text_embeddings
|
339 |
+
|
340 |
+
def run_safety_checker(self, image, device, dtype):
|
341 |
+
if self.safety_checker is not None:
|
342 |
+
safety_checker_input = self.feature_extractor(self.numpy_to_pil(image), return_tensors="pt").to(device)
|
343 |
+
image, has_nsfw_concept = self.safety_checker(
|
344 |
+
images=image, clip_input=safety_checker_input.pixel_values.to(dtype)
|
345 |
+
)
|
346 |
+
else:
|
347 |
+
has_nsfw_concept = None
|
348 |
+
return image, has_nsfw_concept
|
349 |
+
|
350 |
+
def decode_latents(self, latents):
|
351 |
+
video_length = latents.shape[2]
|
352 |
+
latents = 1 / 0.18215 * latents
|
353 |
+
latents = rearrange(latents, "b c f h w -> (b f) c h w")
|
354 |
+
video = self.vae.decode(latents).sample
|
355 |
+
video = rearrange(video, "(b f) c h w -> b c f h w", f=video_length)
|
356 |
+
video = (video / 2 + 0.5).clamp(0, 1)
|
357 |
+
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16
|
358 |
+
video = video.cpu().float().numpy()
|
359 |
+
return video
|
360 |
+
|
361 |
+
def prepare_extra_step_kwargs(self, generator, eta):
|
362 |
+
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
363 |
+
# eta (Ξ·) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
364 |
+
# eta corresponds to Ξ· in DDIM paper: https://arxiv.org/abs/2010.02502
|
365 |
+
# and should be between [0, 1]
|
366 |
+
|
367 |
+
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
368 |
+
extra_step_kwargs = {}
|
369 |
+
if accepts_eta:
|
370 |
+
extra_step_kwargs["eta"] = eta
|
371 |
+
|
372 |
+
# check if the scheduler accepts generator
|
373 |
+
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
374 |
+
if accepts_generator:
|
375 |
+
extra_step_kwargs["generator"] = generator
|
376 |
+
return extra_step_kwargs
|
377 |
+
|
378 |
+
def check_inputs(self, prompt, height, width, callback_steps):
|
379 |
+
if not isinstance(prompt, str) and not isinstance(prompt, list):
|
380 |
+
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
381 |
+
|
382 |
+
if height % 8 != 0 or width % 8 != 0:
|
383 |
+
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
|
384 |
+
|
385 |
+
if (callback_steps is None) or (
|
386 |
+
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
|
387 |
+
):
|
388 |
+
raise ValueError(
|
389 |
+
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
|
390 |
+
f" {type(callback_steps)}."
|
391 |
+
)
|
392 |
+
|
393 |
+
def prepare_latents(self, batch_size, num_channels_latents, video_length, height, width, dtype, device, generator, latents=None):
|
394 |
+
shape = (batch_size, num_channels_latents, video_length, height // self.vae_scale_factor, width // self.vae_scale_factor)
|
395 |
+
if isinstance(generator, list) and len(generator) != batch_size:
|
396 |
+
raise ValueError(
|
397 |
+
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
398 |
+
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
399 |
+
)
|
400 |
+
|
401 |
+
if latents is None:
|
402 |
+
rand_device = "cpu" if device.type == "mps" else device
|
403 |
+
|
404 |
+
if isinstance(generator, list):
|
405 |
+
shape = (1,) + shape[1:]
|
406 |
+
latents = [
|
407 |
+
torch.randn(shape, generator=generator[i], device=rand_device, dtype=dtype)
|
408 |
+
for i in range(batch_size)
|
409 |
+
]
|
410 |
+
latents = torch.cat(latents, dim=0).to(device)
|
411 |
+
else:
|
412 |
+
latents = torch.randn(shape, generator=generator, device=rand_device, dtype=dtype).to(device)
|
413 |
+
else:
|
414 |
+
if latents.shape != shape:
|
415 |
+
raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}")
|
416 |
+
latents = latents.to(device)
|
417 |
+
|
418 |
+
# scale the initial noise by the standard deviation required by the scheduler
|
419 |
+
latents = latents * self.scheduler.init_noise_sigma
|
420 |
+
return latents
|
421 |
+
|
422 |
+
@torch.no_grad()
|
423 |
+
def __call__(
|
424 |
+
self,
|
425 |
+
prompt: Union[str, List[str]],
|
426 |
+
video_length: Optional[int],
|
427 |
+
height: Optional[int] = None,
|
428 |
+
width: Optional[int] = None,
|
429 |
+
num_inference_steps: int = 50,
|
430 |
+
guidance_scale: float = 7.5,
|
431 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
432 |
+
num_videos_per_prompt: Optional[int] = 1,
|
433 |
+
eta: float = 0.0,
|
434 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
435 |
+
latents: Optional[torch.FloatTensor] = None,
|
436 |
+
output_type: Optional[str] = "tensor",
|
437 |
+
return_dict: bool = True,
|
438 |
+
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
439 |
+
callback_steps: Optional[int] = 1,
|
440 |
+
uncond_embeddings: torch.Tensor = None,
|
441 |
+
null_uncond_ratio: float = 1.0,
|
442 |
+
**kwargs,
|
443 |
+
):
|
444 |
+
# Default height and width to unet
|
445 |
+
height = height or self.unet.config.sample_size * self.vae_scale_factor
|
446 |
+
width = width or self.unet.config.sample_size * self.vae_scale_factor
|
447 |
+
|
448 |
+
# Check inputs. Raise error if not correct
|
449 |
+
self.check_inputs(prompt, height, width, callback_steps)
|
450 |
+
|
451 |
+
# Define call parameters
|
452 |
+
batch_size = 1 if isinstance(prompt, str) else len(prompt)
|
453 |
+
device = self._execution_device
|
454 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
455 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
456 |
+
# corresponds to doing no classifier free guidance.
|
457 |
+
do_classifier_free_guidance = guidance_scale > 1.0
|
458 |
+
|
459 |
+
# Encode input prompt
|
460 |
+
with_uncond_embedding = do_classifier_free_guidance if uncond_embeddings is None else False
|
461 |
+
text_embeddings = self._encode_prompt(
|
462 |
+
prompt, device, num_videos_per_prompt, with_uncond_embedding, negative_prompt,
|
463 |
+
)
|
464 |
+
|
465 |
+
# Prepare timesteps
|
466 |
+
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
467 |
+
timesteps = self.scheduler.timesteps
|
468 |
+
|
469 |
+
# Prepare latent variables
|
470 |
+
num_channels_latents = self.unet.in_channels
|
471 |
+
latents = self.prepare_latents(
|
472 |
+
batch_size * num_videos_per_prompt,
|
473 |
+
num_channels_latents,
|
474 |
+
video_length,
|
475 |
+
height,
|
476 |
+
width,
|
477 |
+
text_embeddings.dtype,
|
478 |
+
device,
|
479 |
+
generator,
|
480 |
+
latents,
|
481 |
+
)
|
482 |
+
latents_dtype = latents.dtype
|
483 |
+
|
484 |
+
# Prepare extra step kwargs.
|
485 |
+
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
486 |
+
|
487 |
+
# Denoising loop
|
488 |
+
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
489 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
490 |
+
if uncond_embeddings is not None:
|
491 |
+
start_time = 50
|
492 |
+
assert (timesteps[-start_time:] == timesteps).all()
|
493 |
+
for i, t in enumerate(timesteps):
|
494 |
+
# expand the latents if we are doing classifier free guidance
|
495 |
+
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
496 |
+
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
497 |
+
|
498 |
+
if uncond_embeddings is not None:
|
499 |
+
use_uncond_this_step = True
|
500 |
+
if null_uncond_ratio > 0:
|
501 |
+
if i > len(timesteps) * null_uncond_ratio:
|
502 |
+
use_uncond_this_step = False
|
503 |
+
else:
|
504 |
+
if i < len(timesteps) * (1 + null_uncond_ratio):
|
505 |
+
use_uncond_this_step = False
|
506 |
+
if use_uncond_this_step:
|
507 |
+
text_embeddings_input = torch.cat([uncond_embeddings[i].expand(*text_embeddings.shape), text_embeddings])
|
508 |
+
else:
|
509 |
+
uncond_embeddings_ = self._encode_prompt('', device, num_videos_per_prompt, False, negative_prompt)
|
510 |
+
text_embeddings_input = torch.cat([uncond_embeddings_.expand(*text_embeddings.shape), text_embeddings])
|
511 |
+
else:
|
512 |
+
text_embeddings_input = text_embeddings
|
513 |
+
|
514 |
+
# predict the noise residual
|
515 |
+
noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embeddings_input).sample.to(dtype=latents_dtype)
|
516 |
+
|
517 |
+
# perform guidance
|
518 |
+
if do_classifier_free_guidance:
|
519 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
520 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
521 |
+
|
522 |
+
# compute the previous noisy sample x_t -> x_t-1
|
523 |
+
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
|
524 |
+
|
525 |
+
# call the callback, if provided
|
526 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
527 |
+
progress_bar.update()
|
528 |
+
if callback is not None and i % callback_steps == 0:
|
529 |
+
callback(i, t, latents)
|
530 |
+
|
531 |
+
# Post-processing
|
532 |
+
images = self.decode_latents(latents)
|
533 |
+
|
534 |
+
# Convert to tensor
|
535 |
+
if output_type == "tensor":
|
536 |
+
images = torch.from_numpy(images)
|
537 |
+
|
538 |
+
if not return_dict:
|
539 |
+
return images
|
540 |
+
|
541 |
+
return Vid2VidZeroPipelineOutput(images=images)
|
vid2vid_zero/util.py
ADDED
@@ -0,0 +1,114 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import imageio
|
3 |
+
import tempfile
|
4 |
+
import numpy as np
|
5 |
+
from PIL import Image
|
6 |
+
from typing import Union
|
7 |
+
|
8 |
+
import torch
|
9 |
+
import torchvision
|
10 |
+
|
11 |
+
from tqdm import tqdm
|
12 |
+
from einops import rearrange
|
13 |
+
|
14 |
+
|
15 |
+
def save_videos_as_images(videos: torch.Tensor, path: str, rescale=False, n_rows=4, fps=1):
|
16 |
+
dir_name = os.path.dirname(path)
|
17 |
+
videos = rearrange(videos, "b c t h w -> t b h w c")
|
18 |
+
|
19 |
+
os.makedirs(os.path.join(dir_name, "vis_images"), exist_ok=True)
|
20 |
+
for frame_idx, x in enumerate(videos):
|
21 |
+
if rescale:
|
22 |
+
x = (x + 1.0) / 2.0
|
23 |
+
x = (x * 255).numpy().astype(np.uint8)
|
24 |
+
|
25 |
+
for batch_idx, image in enumerate(x):
|
26 |
+
save_dir = os.path.join(dir_name, "vis_images", f"batch_{batch_idx}")
|
27 |
+
os.makedirs(save_dir, exist_ok=True)
|
28 |
+
save_path = os.path.join(save_dir, f"frame_{frame_idx}.png")
|
29 |
+
image = Image.fromarray(image)
|
30 |
+
image.save(save_path)
|
31 |
+
|
32 |
+
|
33 |
+
def save_videos_grid(videos: torch.Tensor, path: str, rescale=False, n_rows=4, fps=1):
|
34 |
+
videos = rearrange(videos, "b c t h w -> t b c h w")
|
35 |
+
outputs = []
|
36 |
+
for x in videos:
|
37 |
+
x = torchvision.utils.make_grid(x, nrow=n_rows)
|
38 |
+
x = x.transpose(0, 1).transpose(1, 2).squeeze(-1)
|
39 |
+
if rescale:
|
40 |
+
x = (x + 1.0) / 2.0 # -1,1 -> 0,1
|
41 |
+
x = (x * 255).numpy().astype(np.uint8)
|
42 |
+
outputs.append(x)
|
43 |
+
|
44 |
+
os.makedirs(os.path.dirname(path), exist_ok=True)
|
45 |
+
imageio.mimsave(path, outputs, fps=fps)
|
46 |
+
|
47 |
+
# save for gradio demo
|
48 |
+
out_file = tempfile.NamedTemporaryFile(suffix='.mp4', delete=False)
|
49 |
+
out_file.name = path.replace('.gif', '.mp4')
|
50 |
+
writer = imageio.get_writer(out_file.name, fps=fps)
|
51 |
+
for frame in outputs:
|
52 |
+
writer.append_data(frame)
|
53 |
+
writer.close()
|
54 |
+
|
55 |
+
|
56 |
+
@torch.no_grad()
|
57 |
+
def init_prompt(prompt, pipeline):
|
58 |
+
uncond_input = pipeline.tokenizer(
|
59 |
+
[""], padding="max_length", max_length=pipeline.tokenizer.model_max_length,
|
60 |
+
return_tensors="pt"
|
61 |
+
)
|
62 |
+
uncond_embeddings = pipeline.text_encoder(uncond_input.input_ids.to(pipeline.device))[0]
|
63 |
+
text_input = pipeline.tokenizer(
|
64 |
+
[prompt],
|
65 |
+
padding="max_length",
|
66 |
+
max_length=pipeline.tokenizer.model_max_length,
|
67 |
+
truncation=True,
|
68 |
+
return_tensors="pt",
|
69 |
+
)
|
70 |
+
text_embeddings = pipeline.text_encoder(text_input.input_ids.to(pipeline.device))[0]
|
71 |
+
context = torch.cat([uncond_embeddings, text_embeddings])
|
72 |
+
|
73 |
+
return context
|
74 |
+
|
75 |
+
|
76 |
+
def next_step(model_output: Union[torch.FloatTensor, np.ndarray], timestep: int,
|
77 |
+
sample: Union[torch.FloatTensor, np.ndarray], ddim_scheduler):
|
78 |
+
timestep, next_timestep = min(
|
79 |
+
timestep - ddim_scheduler.config.num_train_timesteps // ddim_scheduler.num_inference_steps, 999), timestep
|
80 |
+
alpha_prod_t = ddim_scheduler.alphas_cumprod[timestep] if timestep >= 0 else ddim_scheduler.final_alpha_cumprod
|
81 |
+
alpha_prod_t_next = ddim_scheduler.alphas_cumprod[next_timestep]
|
82 |
+
beta_prod_t = 1 - alpha_prod_t
|
83 |
+
next_original_sample = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5
|
84 |
+
next_sample_direction = (1 - alpha_prod_t_next) ** 0.5 * model_output
|
85 |
+
next_sample = alpha_prod_t_next ** 0.5 * next_original_sample + next_sample_direction
|
86 |
+
return next_sample
|
87 |
+
|
88 |
+
|
89 |
+
def get_noise_pred_single(latents, t, context, unet, normal_infer=False):
|
90 |
+
bs = latents.shape[0] # (b*f, c, h, w) or (b, c, f, h, w)
|
91 |
+
if bs != context.shape[0]:
|
92 |
+
context = context.repeat(bs, 1, 1) # (b*f, len, dim)
|
93 |
+
noise_pred = unet(latents, t, encoder_hidden_states=context, normal_infer=normal_infer)["sample"]
|
94 |
+
return noise_pred
|
95 |
+
|
96 |
+
|
97 |
+
@torch.no_grad()
|
98 |
+
def ddim_loop(pipeline, ddim_scheduler, latent, num_inv_steps, prompt, normal_infer=False):
|
99 |
+
context = init_prompt(prompt, pipeline)
|
100 |
+
uncond_embeddings, cond_embeddings = context.chunk(2)
|
101 |
+
all_latent = [latent]
|
102 |
+
latent = latent.clone().detach()
|
103 |
+
for i in tqdm(range(num_inv_steps)):
|
104 |
+
t = ddim_scheduler.timesteps[len(ddim_scheduler.timesteps) - i - 1]
|
105 |
+
noise_pred = get_noise_pred_single(latent, t, cond_embeddings, pipeline.unet, normal_infer=normal_infer)
|
106 |
+
latent = next_step(noise_pred, t, latent, ddim_scheduler)
|
107 |
+
all_latent.append(latent)
|
108 |
+
return all_latent
|
109 |
+
|
110 |
+
|
111 |
+
@torch.no_grad()
|
112 |
+
def ddim_inversion(pipeline, ddim_scheduler, video_latent, num_inv_steps, prompt="", normal_infer=False):
|
113 |
+
ddim_latents = ddim_loop(pipeline, ddim_scheduler, video_latent, num_inv_steps, prompt, normal_infer=normal_infer)
|
114 |
+
return ddim_latents
|