#!/usr/bin/env python from __future__ import annotations import os import gradio as gr from gradio_demo.runner import Runner def create_demo(runner: Runner, pipe: InferencePipeline | None = None) -> gr.Blocks: hf_token = os.getenv('HF_TOKEN') with gr.Blocks() as demo: with gr.Row(): with gr.Column(): with gr.Box(): gr.Markdown('Input Data') input_video = gr.File(label='Input video') input_prompt = gr.Textbox( label='Input prompt', max_lines=1, placeholder='A car is moving on the road.') gr.Markdown(''' - Upload a video and write a `Input Prompt` that describes the video. ''') with gr.Column(): with gr.Box(): gr.Markdown('Input Parameters') with gr.Row(): model_path = gr.Text( label='Path to off-the-shelf model', value='CompVis/stable-diffusion-v1-4', max_lines=1) resolution = gr.Dropdown(choices=['512', '768'], value='512', label='Resolution', visible=False) with gr.Accordion('Advanced settings', open=False): sample_start_idx = gr.Number( label='Start Frame Index',value=0) sample_frame_rate = gr.Number( label='Frame Rate',value=1) n_sample_frames = gr.Number( label='Number of Frames',value=8) guidance_scale = gr.Number( label='Guidance Scale', value=7.5) seed = gr.Slider(label='Seed', minimum=0, maximum=100000, step=1, randomize=True, value=33) input_token = gr.Text(label='Hugging Face Write Token', placeholder='', visible=False if hf_token else True) gr.Markdown(''' - Upload input video or choose an exmple blow - Set hyperparameters & click start - It takes a few minutes to download model first ''') with gr.Row(): with gr.Column(): validation_prompt = gr.Text( label='Validation Prompt', placeholder= 'prompt to test the model, e.g: a Lego man is surfing') remove_gpu_after_running = gr.Checkbox( label='Remove GPU after running', value=False, interactive=bool(os.getenv('SPACE_ID')), visible=False) with gr.Row(): result = gr.Video(label='Result') # examples with gr.Row(): examples = [ [ 'CompVis/stable-diffusion-v1-4', "data/car-moving.mp4", 'A car is moving on the road.', 8, 0, 1, 'A jeep car is moving on the desert.', 7.5, 512, 33, False, None, ], [ 'CompVis/stable-diffusion-v1-4', "data/black-swan.mp4", 'A blackswan is swimming on the water.', 8, 0, 4, 'A white swan is swimming on the water.', 7.5, 512, 33, False, None, ], [ 'CompVis/stable-diffusion-v1-4', "data/child-riding.mp4", 'A child is riding a bike on the road.', 8, 0, 1, 'A lego child is riding a bike on the road.', 7.5, 512, 33, False, None, ], [ 'CompVis/stable-diffusion-v1-4', "data/car-turn.mp4", 'A jeep car is moving on the road.', 8, 0, 6, 'A jeep car is moving on the snow.', 7.5, 512, 33, False, None, ], [ 'CompVis/stable-diffusion-v1-4', "data/rabbit-watermelon.mp4", 'A rabbit is eating a watermelon.', 8, 0, 6, 'A puppy is eating an orange.', 7.5, 512, 33, False, None, ], [ 'CompVis/stable-diffusion-v1-4', "data/brown-bear.mp4", 'A brown bear is sitting on the ground.', 8, 0, 6, 'A black bear is sitting on the grass.', 7.5, 512, 33, False, None, ], ] gr.Examples(examples=examples, fn=runner.run_vid2vid_zero, inputs=[ model_path, input_video, input_prompt, n_sample_frames, sample_start_idx, sample_frame_rate, validation_prompt, guidance_scale, resolution, seed, remove_gpu_after_running, input_token, ], outputs=result, cache_examples=os.getenv('SYSTEM') == 'spaces' ) # run run_button_vid2vid_zero = gr.Button('Start vid2vid-zero') run_button_vid2vid_zero.click( fn=runner.run_vid2vid_zero, inputs=[ model_path, input_video, input_prompt, n_sample_frames, sample_start_idx, sample_frame_rate, validation_prompt, guidance_scale, resolution, seed, remove_gpu_after_running, input_token, ], outputs=result) return demo if __name__ == '__main__': hf_token = os.getenv('HF_TOKEN') runner = Runner(hf_token) demo = create_demo(runner) demo.queue(max_size=1).launch(share=False)