aiisc-watermarking-modelv3 / sampling_methods.py
jgyasu's picture
Upload folder using huggingface_hub
4f150bd verified
raw
history blame
7.26 kB
import re
from nltk.corpus import stopwords
import random
from termcolor import colored
# Function to Watermark a Word Take Randomly Between Each lcs Point (Random Sampling)
def random_sampling(original_sentence, paraphrased_sentences):
stop_words = set(stopwords.words('english'))
original_sentence_lower = original_sentence.lower()
paraphrased_sentences_lower = [s.lower() for s in paraphrased_sentences]
paraphrased_sentences_no_stopwords = []
for sentence in paraphrased_sentences_lower:
words = re.findall(r'\b\w+\b', sentence)
filtered_sentence = ' '.join([word for word in words if word not in stop_words])
paraphrased_sentences_no_stopwords.append(filtered_sentence)
results = []
for idx, sentence in enumerate(paraphrased_sentences_no_stopwords):
common_words = set(original_sentence_lower.split()) & set(sentence.split())
common_substrings = ', '.join(sorted(common_words))
words_to_replace = [word for word in sentence.split() if word not in common_words]
if words_to_replace:
word_to_mark = random.choice(words_to_replace)
sentence = sentence.replace(word_to_mark, colored(word_to_mark, 'red'))
for word in common_words:
sentence = sentence.replace(word, colored(word, 'green'))
results.append({
f"Paraphrased Sentence {idx+1}": sentence,
"Common Substrings": common_substrings
})
return results
# Function for Inverse Transform Sampling
def inverse_transform_sampling(original_sentence, paraphrased_sentences):
stop_words = set(stopwords.words('english'))
original_sentence_lower = original_sentence.lower()
paraphrased_sentences_lower = [s.lower() for s in paraphrased_sentences]
paraphrased_sentences_no_stopwords = []
for sentence in paraphrased_sentences_lower:
words = re.findall(r'\b\w+\b', sentence)
filtered_sentence = ' '.join([word for word in words if word not in stop_words])
paraphrased_sentences_no_stopwords.append(filtered_sentence)
results = []
for idx, sentence in enumerate(paraphrased_sentences_no_stopwords):
common_words = set(original_sentence_lower.split()) & set(sentence.split())
common_substrings = ', '.join(sorted(common_words))
words_to_replace = [word for word in sentence.split() if word not in common_words]
if words_to_replace:
probabilities = [1 / len(words_to_replace)] * len(words_to_replace)
chosen_word = random.choices(words_to_replace, weights=probabilities)[0]
sentence = sentence.replace(chosen_word, colored(chosen_word, 'magenta'))
for word in common_words:
sentence = sentence.replace(word, colored(word, 'green'))
results.append({
f"Paraphrased Sentence {idx+1}": sentence,
"Common Substrings": common_substrings
})
return results
# Function for Contextual Sampling
def contextual_sampling(original_sentence, paraphrased_sentences):
stop_words = set(stopwords.words('english'))
original_sentence_lower = original_sentence.lower()
paraphrased_sentences_lower = [s.lower() for s in paraphrased_sentences]
paraphrased_sentences_no_stopwords = []
for sentence in paraphrased_sentences_lower:
words = re.findall(r'\b\w+\b', sentence)
filtered_sentence = ' '.join([word for word in words if word not in stop_words])
paraphrased_sentences_no_stopwords.append(filtered_sentence)
results = []
for idx, sentence in enumerate(paraphrased_sentences_no_stopwords):
common_words = set(original_sentence_lower.split()) & set(sentence.split())
common_substrings = ', '.join(sorted(common_words))
words_to_replace = [word for word in sentence.split() if word not in common_words]
if words_to_replace:
context = " ".join([word for word in sentence.split() if word not in common_words])
chosen_word = random.choice(words_to_replace)
sentence = sentence.replace(chosen_word, colored(chosen_word, 'red'))
for word in common_words:
sentence = sentence.replace(word, colored(word, 'green'))
results.append({
f"Paraphrased Sentence {idx+1}": sentence,
"Common Substrings": common_substrings
})
return results
# Function for Exponential Minimum Sampling
def exponential_minimum_sampling(original_sentence, paraphrased_sentences):
stop_words = set(stopwords.words('english'))
original_sentence_lower = original_sentence.lower()
paraphrased_sentences_lower = [s.lower() for s in paraphrased_sentences]
paraphrased_sentences_no_stopwords = []
for sentence in paraphrased_sentences_lower:
words = re.findall(r'\b\w+\b', sentence)
filtered_sentence = ' '.join([word for word in words if word not in stop_words])
paraphrased_sentences_no_stopwords.append(filtered_sentence)
results = []
for idx, sentence in enumerate(paraphrased_sentences_no_stopwords):
common_words = set(original_sentence_lower.split()) & set(sentence.split())
common_substrings = ', '.join(sorted(common_words))
words_to_replace = [word for word in sentence.split() if word not in common_words]
if words_to_replace:
num_words = len(words_to_replace)
probabilities = [2 ** (-i) for i in range(num_words)]
chosen_word = random.choices(words_to_replace, weights=probabilities)[0]
sentence = sentence.replace(chosen_word, colored(chosen_word, 'red'))
for word in common_words:
sentence = sentence.replace(word, colored(word, 'green'))
results.append({
f"Paraphrased Sentence {idx+1}": sentence,
"Common Substrings": common_substrings
})
return results
#---------------------------------------------------------------------------
# aryans implementation please refactor it as you see fit
import torch
import random
def sample_word(words, logits, sampling_technique='inverse_transform', temperature=1.0):
if sampling_technique == 'inverse_transform':
probs = torch.softmax(torch.tensor(logits), dim=-1)
cumulative_probs = torch.cumsum(probs, dim=-1)
random_prob = random.random()
sampled_index = torch.where(cumulative_probs >= random_prob)[0][0]
elif sampling_technique == 'exponential_minimum':
probs = torch.softmax(torch.tensor(logits), dim=-1)
exp_probs = torch.exp(-torch.log(probs))
random_probs = torch.rand_like(exp_probs)
sampled_index = torch.argmax(random_probs * exp_probs)
elif sampling_technique == 'temperature':
scaled_logits = torch.tensor(logits) / temperature
probs = torch.softmax(scaled_logits, dim=-1)
sampled_index = torch.multinomial(probs, 1).item()
elif sampling_technique == 'greedy':
sampled_index = torch.argmax(torch.tensor(logits)).item()
else:
raise ValueError("Invalid sampling technique. Choose 'inverse_transform', 'exponential_minimum', 'temperature', or 'greedy'.")
sampled_word = words[sampled_index]
return sampled_word