aiisc-watermarking-modelv3 / sampling_methods.py
jgyasu's picture
Upload folder using huggingface_hub
ee305a4 verified
raw
history blame
2.59 kB
# import torch
# import random
# def sample_word(words, logits, sampling_technique='inverse_transform', temperature=1.0):
# if sampling_technique == 'inverse_transform':
# probs = torch.softmax(torch.tensor(logits), dim=-1)
# cumulative_probs = torch.cumsum(probs, dim=-1)
# random_prob = random.random()
# sampled_index = torch.where(cumulative_probs >= random_prob)[0][0]
# elif sampling_technique == 'exponential_minimum':
# probs = torch.softmax(torch.tensor(logits), dim=-1)
# exp_probs = torch.exp(-torch.log(probs))
# random_probs = torch.rand_like(exp_probs)
# sampled_index = torch.argmax(random_probs * exp_probs)
# elif sampling_technique == 'temperature':
# scaled_logits = torch.tensor(logits) / temperature
# probs = torch.softmax(scaled_logits, dim=-1)
# sampled_index = torch.multinomial(probs, 1).item()
# elif sampling_technique == 'greedy':
# sampled_index = torch.argmax(torch.tensor(logits)).item()
# else:
# raise ValueError("Invalid sampling technique. Choose 'inverse_transform', 'exponential_minimum', 'temperature', or 'greedy'.")
# sampled_word = words[sampled_index]
# return sampled_word
import torch
import random
def sample_word(sentence, words, logits, sampling_technique='inverse_transform', temperature=1.0):
if sampling_technique == 'inverse_transform':
probs = torch.softmax(torch.tensor(logits), dim=-1)
cumulative_probs = torch.cumsum(probs, dim=-1)
random_prob = random.random()
sampled_index = torch.where(cumulative_probs >= random_prob)[0][0]
elif sampling_technique == 'exponential_minimum':
probs = torch.softmax(torch.tensor(logits), dim=-1)
exp_probs = torch.exp(-torch.log(probs))
random_probs = torch.rand_like(exp_probs)
sampled_index = torch.argmax(random_probs * exp_probs)
elif sampling_technique == 'temperature':
scaled_logits = torch.tensor(logits) / temperature
probs = torch.softmax(scaled_logits, dim=-1)
sampled_index = torch.multinomial(probs, 1).item()
elif sampling_technique == 'greedy':
sampled_index = torch.argmax(torch.tensor(logits)).item()
else:
raise ValueError("Invalid sampling technique. Choose 'inverse_transform', 'exponential_minimum', 'temperature', or 'greedy'.")
sampled_word = words[sampled_index]
# Replace [MASK] with the sampled word
filled_sentence = sentence.replace('[MASK]', sampled_word)
return filled_sentence