# import torch | |
# import random | |
# def sample_word(words, logits, sampling_technique='inverse_transform', temperature=1.0): | |
# if sampling_technique == 'inverse_transform': | |
# probs = torch.softmax(torch.tensor(logits), dim=-1) | |
# cumulative_probs = torch.cumsum(probs, dim=-1) | |
# random_prob = random.random() | |
# sampled_index = torch.where(cumulative_probs >= random_prob)[0][0] | |
# elif sampling_technique == 'exponential_minimum': | |
# probs = torch.softmax(torch.tensor(logits), dim=-1) | |
# exp_probs = torch.exp(-torch.log(probs)) | |
# random_probs = torch.rand_like(exp_probs) | |
# sampled_index = torch.argmax(random_probs * exp_probs) | |
# elif sampling_technique == 'temperature': | |
# scaled_logits = torch.tensor(logits) / temperature | |
# probs = torch.softmax(scaled_logits, dim=-1) | |
# sampled_index = torch.multinomial(probs, 1).item() | |
# elif sampling_technique == 'greedy': | |
# sampled_index = torch.argmax(torch.tensor(logits)).item() | |
# else: | |
# raise ValueError("Invalid sampling technique. Choose 'inverse_transform', 'exponential_minimum', 'temperature', or 'greedy'.") | |
# sampled_word = words[sampled_index] | |
# return sampled_word | |
import torch | |
import random | |
def sample_word(sentence, words, logits, sampling_technique='inverse_transform', temperature=1.0): | |
if sampling_technique == 'inverse_transform': | |
probs = torch.softmax(torch.tensor(logits), dim=-1) | |
cumulative_probs = torch.cumsum(probs, dim=-1) | |
random_prob = random.random() | |
sampled_index = torch.where(cumulative_probs >= random_prob)[0][0] | |
elif sampling_technique == 'exponential_minimum': | |
probs = torch.softmax(torch.tensor(logits), dim=-1) | |
exp_probs = torch.exp(-torch.log(probs)) | |
random_probs = torch.rand_like(exp_probs) | |
sampled_index = torch.argmax(random_probs * exp_probs) | |
elif sampling_technique == 'temperature': | |
scaled_logits = torch.tensor(logits) / temperature | |
probs = torch.softmax(scaled_logits, dim=-1) | |
sampled_index = torch.multinomial(probs, 1).item() | |
elif sampling_technique == 'greedy': | |
sampled_index = torch.argmax(torch.tensor(logits)).item() | |
else: | |
raise ValueError("Invalid sampling technique. Choose 'inverse_transform', 'exponential_minimum', 'temperature', or 'greedy'.") | |
sampled_word = words[sampled_index] | |
# Replace [MASK] with the sampled word | |
filled_sentence = sentence.replace('[MASK]', sampled_word) | |
return filled_sentence |