aiisc-watermarking-modelv3 / sampling_methods.py
jgyasu's picture
Upload folder using huggingface_hub
436c4c1 verified
raw
history blame
1.95 kB
import torch
import random
from vocabulary_split import split_vocabulary, filter_logits
# from transformers import AutoTokenizer, AutoModelForMaskedLM
from masking_methods import tokenizer
# Load tokenizer and model for masked language model
# tokenizer = AutoTokenizer.from_pretrained("bert-large-cased-whole-word-masking")
# model = AutoModelForMaskedLM.from_pretrained("bert-large-cased-whole-word-masking")
# Get permissible vocabulary
permissible, _ = split_vocabulary(seed=42)
permissible_indices = torch.tensor([i in permissible.values() for i in range(len(tokenizer))])
def sample_word(sentence, words, logits, sampling_technique='inverse_transform', temperature=1.0):
filtered_logits = filter_logits(torch.tensor(logits), permissible_indices)
if sampling_technique == 'inverse_transform':
probs = torch.softmax(filtered_logits / temperature, dim=-1)
cumulative_probs = torch.cumsum(probs, dim=-1)
random_prob = random.random()
sampled_index = torch.where(cumulative_probs >= random_prob)[0][0]
elif sampling_technique == 'exponential_minimum':
probs = torch.softmax(filtered_logits / temperature, dim=-1)
exp_probs = torch.exp(-torch.log(probs))
random_probs = torch.rand_like(exp_probs)
sampled_index = torch.argmax(random_probs * exp_probs)
elif sampling_technique == 'temperature':
probs = torch.softmax(filtered_logits / temperature, dim=-1)
sampled_index = torch.multinomial(probs, 1).item()
elif sampling_technique == 'greedy':
sampled_index = torch.argmax(filtered_logits).item()
else:
raise ValueError("Invalid sampling technique. Choose 'inverse_transform', 'exponential_minimum', 'temperature', or 'greedy'.")
sampled_word = tokenizer.decode([sampled_index])
# Replace [MASK] with the sampled word
filled_sentence = sentence.replace('[MASK]', sampled_word)
return filled_sentence