Upload folder using huggingface_hub
Browse files- app.py +38 -56
- entailment.py +1 -1
- lcs.py +2 -2
- paraphraser.py +1 -1
- tree.py +430 -87
app.py
CHANGED
@@ -3,31 +3,11 @@ nltk.download('stopwords')
|
|
3 |
from transformers import AutoTokenizer
|
4 |
from transformers import AutoModelForSeq2SeqLM
|
5 |
import plotly.graph_objs as go
|
6 |
-
import textwrap
|
7 |
from transformers import pipeline
|
8 |
-
import re
|
9 |
-
import requests
|
10 |
-
from PIL import Image
|
11 |
-
import itertools
|
12 |
-
import numpy as np
|
13 |
-
import matplotlib.pyplot as plt
|
14 |
-
import matplotlib
|
15 |
from matplotlib.colors import ListedColormap, rgb2hex
|
16 |
-
import ipywidgets as widgets
|
17 |
-
from IPython.display import display, HTML
|
18 |
-
import pandas as pd
|
19 |
-
from pprint import pprint
|
20 |
-
from tenacity import retry
|
21 |
-
from tqdm import tqdm
|
22 |
-
from transformers import GPT2LMHeadModel
|
23 |
-
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, AutoModelForMaskedLM
|
24 |
import random
|
25 |
-
from nltk.corpus import stopwords
|
26 |
-
from termcolor import colored
|
27 |
-
from nltk.translate.bleu_score import sentence_bleu
|
28 |
-
from transformers import BertTokenizer, BertModel
|
29 |
import gradio as gr
|
30 |
-
from tree import
|
31 |
from paraphraser import generate_paraphrase
|
32 |
from lcs import find_common_subsequences
|
33 |
from highlighter import highlight_common_words, highlight_common_words_dict
|
@@ -47,22 +27,18 @@ def model(prompt):
|
|
47 |
masked_sentences = []
|
48 |
masked_words = []
|
49 |
masked_logits = []
|
50 |
-
selected_sentences_list = list(selected_sentences.keys())
|
51 |
|
52 |
-
for sentence in
|
53 |
-
# Mask non-stopword
|
54 |
masked_sent, logits, words = mask_non_stopword(sentence)
|
55 |
masked_sentences.append(masked_sent)
|
56 |
masked_words.append(words)
|
57 |
masked_logits.append(logits)
|
58 |
|
59 |
-
# Mask non-stopword pseudorandom
|
60 |
masked_sent, logits, words = mask_non_stopword_pseudorandom(sentence)
|
61 |
masked_sentences.append(masked_sent)
|
62 |
masked_words.append(words)
|
63 |
masked_logits.append(logits)
|
64 |
|
65 |
-
# High entropy words
|
66 |
masked_sent, logits, words = high_entropy_words(sentence, common_grams)
|
67 |
masked_sentences.append(masked_sent)
|
68 |
masked_words.append(words)
|
@@ -75,45 +51,39 @@ def model(prompt):
|
|
75 |
sampled_sentences.append(sample_word(masked_sent, words, logits, sampling_technique='temperature', temperature=1.0))
|
76 |
sampled_sentences.append(sample_word(masked_sent, words, logits, sampling_technique='greedy', temperature=1.0))
|
77 |
|
78 |
-
|
|
|
79 |
colors = ["red", "blue", "brown", "green"]
|
80 |
|
81 |
-
# Function to generate color from predefined set
|
82 |
def select_color():
|
83 |
return random.choice(colors)
|
84 |
|
85 |
-
# Create highlight_info with selected colors
|
86 |
highlight_info = [(word, select_color()) for _, word in common_grams]
|
87 |
|
88 |
-
|
89 |
-
highlighted_user_prompt = highlight_common_words(common_grams, [user_prompt], "User Prompt (Highlighted and Numbered)")
|
90 |
highlighted_accepted_sentences = highlight_common_words_dict(common_grams, selected_sentences, "Paraphrased Sentences")
|
91 |
highlighted_discarded_sentences = highlight_common_words_dict(common_grams, discarded_sentences, "Discarded Sentences")
|
92 |
|
|
|
|
|
93 |
|
94 |
-
# Initialize empty list to hold the trees
|
95 |
-
trees = []
|
96 |
-
|
97 |
-
# Initialize the indices for masked and sampled sentences
|
98 |
masked_index = 0
|
99 |
sampled_index = 0
|
100 |
|
101 |
-
for i, sentence in enumerate(
|
102 |
-
# Generate the sublists of masked and sampled sentences based on current indices
|
103 |
next_masked_sentences = masked_sentences[masked_index:masked_index + 3]
|
104 |
next_sampled_sentences = sampled_sentences[sampled_index:sampled_index + 12]
|
105 |
-
|
106 |
-
# Create the tree for the current sentence
|
107 |
-
tree = generate_subplot(sentence, next_masked_sentences, next_sampled_sentences, highlight_info)
|
108 |
-
trees.append(tree)
|
109 |
-
|
110 |
-
# Update the indices for the next iteration
|
111 |
-
masked_index += 3
|
112 |
-
sampled_index += 12
|
113 |
|
|
|
|
|
|
|
|
|
|
|
114 |
|
115 |
-
|
116 |
-
|
|
|
|
|
117 |
|
118 |
|
119 |
with gr.Blocks(theme=gr.themes.Monochrome()) as demo:
|
@@ -136,17 +106,29 @@ with gr.Blocks(theme=gr.themes.Monochrome()) as demo:
|
|
136 |
with gr.TabItem("Discarded Sentences"):
|
137 |
highlighted_discarded_sentences = gr.HTML()
|
138 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
139 |
with gr.Row():
|
140 |
with gr.Tabs():
|
141 |
-
|
142 |
-
for i in range(
|
143 |
-
with gr.TabItem(f"
|
144 |
-
|
145 |
-
|
146 |
|
147 |
-
submit_button.click(model, inputs=user_input, outputs=[highlighted_user_prompt, highlighted_accepted_sentences, highlighted_discarded_sentences] +
|
148 |
clear_button.click(lambda: "", inputs=None, outputs=user_input)
|
149 |
-
clear_button.click(lambda: "", inputs=None, outputs=[highlighted_user_prompt, highlighted_accepted_sentences, highlighted_discarded_sentences] +
|
150 |
|
151 |
-
|
152 |
-
demo.launch(share=True)
|
|
|
3 |
from transformers import AutoTokenizer
|
4 |
from transformers import AutoModelForSeq2SeqLM
|
5 |
import plotly.graph_objs as go
|
|
|
6 |
from transformers import pipeline
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
from matplotlib.colors import ListedColormap, rgb2hex
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
import random
|
|
|
|
|
|
|
|
|
9 |
import gradio as gr
|
10 |
+
from tree import generate_subplot1, generate_subplot2
|
11 |
from paraphraser import generate_paraphrase
|
12 |
from lcs import find_common_subsequences
|
13 |
from highlighter import highlight_common_words, highlight_common_words_dict
|
|
|
27 |
masked_sentences = []
|
28 |
masked_words = []
|
29 |
masked_logits = []
|
|
|
30 |
|
31 |
+
for sentence in paraphrased_sentences:
|
|
|
32 |
masked_sent, logits, words = mask_non_stopword(sentence)
|
33 |
masked_sentences.append(masked_sent)
|
34 |
masked_words.append(words)
|
35 |
masked_logits.append(logits)
|
36 |
|
|
|
37 |
masked_sent, logits, words = mask_non_stopword_pseudorandom(sentence)
|
38 |
masked_sentences.append(masked_sent)
|
39 |
masked_words.append(words)
|
40 |
masked_logits.append(logits)
|
41 |
|
|
|
42 |
masked_sent, logits, words = high_entropy_words(sentence, common_grams)
|
43 |
masked_sentences.append(masked_sent)
|
44 |
masked_words.append(words)
|
|
|
51 |
sampled_sentences.append(sample_word(masked_sent, words, logits, sampling_technique='temperature', temperature=1.0))
|
52 |
sampled_sentences.append(sample_word(masked_sent, words, logits, sampling_technique='greedy', temperature=1.0))
|
53 |
|
54 |
+
print(len(sampled_sentences))
|
55 |
+
|
56 |
colors = ["red", "blue", "brown", "green"]
|
57 |
|
|
|
58 |
def select_color():
|
59 |
return random.choice(colors)
|
60 |
|
|
|
61 |
highlight_info = [(word, select_color()) for _, word in common_grams]
|
62 |
|
63 |
+
highlighted_user_prompt = highlight_common_words(common_grams, [user_prompt], "Non-melting Points in the User Prompt")
|
|
|
64 |
highlighted_accepted_sentences = highlight_common_words_dict(common_grams, selected_sentences, "Paraphrased Sentences")
|
65 |
highlighted_discarded_sentences = highlight_common_words_dict(common_grams, discarded_sentences, "Discarded Sentences")
|
66 |
|
67 |
+
trees1 = []
|
68 |
+
trees2 = []
|
69 |
|
|
|
|
|
|
|
|
|
70 |
masked_index = 0
|
71 |
sampled_index = 0
|
72 |
|
73 |
+
for i, sentence in enumerate(paraphrased_sentences):
|
|
|
74 |
next_masked_sentences = masked_sentences[masked_index:masked_index + 3]
|
75 |
next_sampled_sentences = sampled_sentences[sampled_index:sampled_index + 12]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
|
77 |
+
tree1 = generate_subplot1(sentence, next_masked_sentences, highlight_info, common_grams)
|
78 |
+
trees1.append(tree1)
|
79 |
+
|
80 |
+
tree2 = generate_subplot2(next_masked_sentences, next_sampled_sentences, highlight_info, common_grams)
|
81 |
+
trees2.append(tree2)
|
82 |
|
83 |
+
masked_index += 3
|
84 |
+
sampled_index += 12
|
85 |
+
|
86 |
+
return [highlighted_user_prompt, highlighted_accepted_sentences, highlighted_discarded_sentences] + trees1 + trees2
|
87 |
|
88 |
|
89 |
with gr.Blocks(theme=gr.themes.Monochrome()) as demo:
|
|
|
106 |
with gr.TabItem("Discarded Sentences"):
|
107 |
highlighted_discarded_sentences = gr.HTML()
|
108 |
|
109 |
+
# Adding labels before the tree plots
|
110 |
+
with gr.Row():
|
111 |
+
gr.Markdown("### Where to Mask?") # Label for masked sentences trees
|
112 |
+
with gr.Row():
|
113 |
+
with gr.Tabs():
|
114 |
+
tree1_tabs = []
|
115 |
+
for i in range(10): # Adjust this range according to the number of trees
|
116 |
+
with gr.TabItem(f"Sentence {i+1}"):
|
117 |
+
tree1 = gr.Plot()
|
118 |
+
tree1_tabs.append(tree1)
|
119 |
+
|
120 |
+
with gr.Row():
|
121 |
+
gr.Markdown("### How to Mask?") # Label for sampled sentences trees
|
122 |
with gr.Row():
|
123 |
with gr.Tabs():
|
124 |
+
tree2_tabs = []
|
125 |
+
for i in range(10): # Adjust this range according to the number of trees
|
126 |
+
with gr.TabItem(f"Sentence {i+1}"):
|
127 |
+
tree2 = gr.Plot()
|
128 |
+
tree2_tabs.append(tree2)
|
129 |
|
130 |
+
submit_button.click(model, inputs=user_input, outputs=[highlighted_user_prompt, highlighted_accepted_sentences, highlighted_discarded_sentences] + tree1_tabs + tree2_tabs)
|
131 |
clear_button.click(lambda: "", inputs=None, outputs=user_input)
|
132 |
+
clear_button.click(lambda: "", inputs=None, outputs=[highlighted_user_prompt, highlighted_accepted_sentences, highlighted_discarded_sentences] + tree1_tabs + tree2_tabs)
|
133 |
|
134 |
+
demo.launch(share=True)
|
|
entailment.py
CHANGED
@@ -28,4 +28,4 @@ def analyze_entailment(original_sentence, paraphrased_sentences, threshold):
|
|
28 |
|
29 |
return all_sentences, selected_sentences, discarded_sentences
|
30 |
|
31 |
-
# print(analyze_entailment("I love you", ["
|
|
|
28 |
|
29 |
return all_sentences, selected_sentences, discarded_sentences
|
30 |
|
31 |
+
# print(analyze_entailment("I love you", [""], 0.7))
|
lcs.py
CHANGED
@@ -40,7 +40,7 @@ def find_common_subsequences(sentence, str_list):
|
|
40 |
return indexed_common_grams
|
41 |
|
42 |
# Example usage
|
43 |
-
# sentence = "
|
44 |
-
# str_list = [
|
45 |
|
46 |
# print(find_common_subsequences(sentence, str_list))
|
|
|
40 |
return indexed_common_grams
|
41 |
|
42 |
# Example usage
|
43 |
+
# sentence = "Donald Trump said at a campaign rally event in Wilkes-Barre, Pennsylvania, that there has “never been a more dangerous time 5since the Holocaust” to be Jewish in the United States."
|
44 |
+
# str_list = ['']
|
45 |
|
46 |
# print(find_common_subsequences(sentence, str_list))
|
paraphraser.py
CHANGED
@@ -28,4 +28,4 @@ def generate_paraphrase(question):
|
|
28 |
res = paraphrase(question, para_tokenizer, para_model)
|
29 |
return res
|
30 |
|
31 |
-
# print(generate_paraphrase("
|
|
|
28 |
res = paraphrase(question, para_tokenizer, para_model)
|
29 |
return res
|
30 |
|
31 |
+
# print(generate_paraphrase("Donald Trump said at a campaign rally event in Wilkes-Barre, Pennsylvania, that there has “never been a more dangerous time 5since the Holocaust” to be Jewish in the United States."))
|
tree.py
CHANGED
@@ -3,15 +3,12 @@
|
|
3 |
# import re
|
4 |
# from collections import defaultdict
|
5 |
|
6 |
-
# def
|
7 |
# # Combine nodes into one list with appropriate labels
|
8 |
-
# nodes = [paraphrased_sentence] + scheme_sentences
|
9 |
# nodes[0] += ' L0' # Paraphrased sentence is level 0
|
10 |
-
#
|
11 |
-
# for i in range(1, para_len + 1):
|
12 |
# nodes[i] += ' L1' # Scheme sentences are level 1
|
13 |
-
# for i in range(para_len + 1, len(nodes)):
|
14 |
-
# nodes[i] += ' L2' # Sampled sentences are level 2
|
15 |
|
16 |
# # Define the highlight_words function
|
17 |
# def highlight_words(sentence, color_map):
|
@@ -23,7 +20,7 @@
|
|
23 |
# cleaned_nodes = [re.sub(r'\sL[0-9]$', '', node) for node in nodes]
|
24 |
# global_color_map = dict(highlight_info)
|
25 |
# highlighted_nodes = [highlight_words(node, global_color_map) for node in cleaned_nodes]
|
26 |
-
# wrapped_nodes = ['<br>'.join(textwrap.wrap(node, width=
|
27 |
|
28 |
# # Function to determine tree levels and create edges dynamically
|
29 |
# def get_levels_and_edges(nodes):
|
@@ -39,37 +36,185 @@
|
|
39 |
# if level == 1:
|
40 |
# edges.append((root_node, i))
|
41 |
|
42 |
-
#
|
43 |
-
# l1_indices = [i for i, level in levels.items() if level == 1]
|
44 |
-
# l2_indices = [i for i, level in levels.items() if level == 2]
|
45 |
|
46 |
-
#
|
47 |
-
#
|
48 |
-
#
|
49 |
-
|
50 |
-
#
|
51 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
|
53 |
-
#
|
54 |
-
#
|
55 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
|
57 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
|
59 |
-
#
|
60 |
-
#
|
61 |
-
#
|
62 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
|
64 |
-
#
|
65 |
-
#
|
66 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
|
68 |
# return levels, edges
|
69 |
|
70 |
# # Get levels and dynamic edges
|
71 |
# levels, edges = get_levels_and_edges(nodes)
|
72 |
-
# max_level = max(levels.values(), default=0)
|
73 |
|
74 |
# # Calculate positions
|
75 |
# positions = {}
|
@@ -80,15 +225,12 @@
|
|
80 |
# y_offsets = {level: - (height - 1) / 2 for level, height in level_heights.items()}
|
81 |
# x_gap = 2
|
82 |
# l1_y_gap = 10
|
83 |
-
# l2_y_gap = 6
|
84 |
|
85 |
# for node, level in levels.items():
|
86 |
# if level == 1:
|
87 |
# positions[node] = (-level * x_gap, y_offsets[level] * l1_y_gap)
|
88 |
-
# elif level == 2:
|
89 |
-
# positions[node] = (-level * x_gap, y_offsets[level] * l2_y_gap)
|
90 |
# else:
|
91 |
-
# positions[node] = (-level * x_gap, y_offsets[level] *
|
92 |
# y_offsets[level] += 1
|
93 |
|
94 |
# # Function to highlight words in a wrapped node string
|
@@ -105,71 +247,116 @@
|
|
105 |
# colored_parts.append(part)
|
106 |
# return ''.join(colored_parts)
|
107 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
108 |
# # Create figure
|
109 |
-
#
|
110 |
|
111 |
# # Add nodes to the figure
|
112 |
# for i, node in enumerate(wrapped_nodes):
|
113 |
# colored_node = color_highlighted_words(node, global_color_map)
|
114 |
# x, y = positions[i]
|
115 |
-
#
|
116 |
# x=[-x], # Reflect the x coordinate
|
117 |
# y=[y],
|
118 |
# mode='markers',
|
119 |
# marker=dict(size=10, color='blue'),
|
120 |
# hoverinfo='none'
|
121 |
# ))
|
122 |
-
#
|
123 |
# x=-x, # Reflect the x coordinate
|
124 |
# y=y,
|
125 |
# text=colored_node,
|
126 |
# showarrow=False,
|
127 |
# xshift=15,
|
128 |
# align="center",
|
129 |
-
# font=dict(size=
|
130 |
# bordercolor='black',
|
131 |
# borderwidth=1,
|
132 |
# borderpad=2,
|
133 |
# bgcolor='white',
|
134 |
-
# width=
|
|
|
135 |
# )
|
136 |
|
137 |
-
# # Add edges
|
138 |
-
# for edge in edges:
|
139 |
# x0, y0 = positions[edge[0]]
|
140 |
# x1, y1 = positions[edge[1]]
|
141 |
-
#
|
142 |
# x=[-x0, -x1], # Reflect the x coordinates
|
143 |
# y=[y0, y1],
|
144 |
# mode='lines',
|
145 |
# line=dict(color='black', width=1)
|
146 |
# ))
|
147 |
|
148 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
149 |
# showlegend=False,
|
150 |
# margin=dict(t=20, b=20, l=20, r=20),
|
151 |
# xaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
|
152 |
# yaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
|
153 |
-
# width=
|
154 |
# height=1000 # Adjusted height to accommodate more levels
|
155 |
# )
|
156 |
|
157 |
-
# return
|
|
|
158 |
|
159 |
import plotly.graph_objects as go
|
160 |
import textwrap
|
161 |
import re
|
162 |
from collections import defaultdict
|
163 |
|
164 |
-
def
|
165 |
# Combine nodes into one list with appropriate labels
|
166 |
-
nodes = [paraphrased_sentence] + scheme_sentences
|
167 |
nodes[0] += ' L0' # Paraphrased sentence is level 0
|
168 |
-
|
169 |
-
for i in range(1, para_len + 1):
|
170 |
nodes[i] += ' L1' # Scheme sentences are level 1
|
171 |
-
|
172 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
173 |
|
174 |
# Define the highlight_words function
|
175 |
def highlight_words(sentence, color_map):
|
@@ -181,7 +368,7 @@ def generate_subplot(paraphrased_sentence, scheme_sentences, sampled_sentence, h
|
|
181 |
cleaned_nodes = [re.sub(r'\sL[0-9]$', '', node) for node in nodes]
|
182 |
global_color_map = dict(highlight_info)
|
183 |
highlighted_nodes = [highlight_words(node, global_color_map) for node in cleaned_nodes]
|
184 |
-
wrapped_nodes = ['<br>'.join(textwrap.wrap(node, width=
|
185 |
|
186 |
# Function to determine tree levels and create edges dynamically
|
187 |
def get_levels_and_edges(nodes):
|
@@ -197,31 +384,188 @@ def generate_subplot(paraphrased_sentence, scheme_sentences, sampled_sentence, h
|
|
197 |
if level == 1:
|
198 |
edges.append((root_node, i))
|
199 |
|
200 |
-
|
201 |
-
l1_indices = [i for i, level in levels.items() if level == 1]
|
202 |
-
l2_indices = [i for i, level in levels.items() if level == 2]
|
203 |
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
l2_index = l2_start + j
|
208 |
-
if l2_index < len(l2_indices):
|
209 |
-
edges.append((l1_node, l2_indices[l2_index]))
|
210 |
|
211 |
-
|
212 |
-
|
213 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
214 |
|
215 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
216 |
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
|
|
|
|
|
|
|
|
221 |
|
222 |
-
|
223 |
-
|
224 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
225 |
|
226 |
return levels, edges
|
227 |
|
@@ -238,15 +582,12 @@ def generate_subplot(paraphrased_sentence, scheme_sentences, sampled_sentence, h
|
|
238 |
y_offsets = {level: - (height - 1) / 2 for level, height in level_heights.items()}
|
239 |
x_gap = 2
|
240 |
l1_y_gap = 10
|
241 |
-
l2_y_gap = 6
|
242 |
|
243 |
for node, level in levels.items():
|
244 |
if level == 1:
|
245 |
positions[node] = (-level * x_gap, y_offsets[level] * l1_y_gap)
|
246 |
-
elif level == 2:
|
247 |
-
positions[node] = (-level * x_gap, y_offsets[level] * l2_y_gap)
|
248 |
else:
|
249 |
-
positions[node] = (-level * x_gap, y_offsets[level] *
|
250 |
y_offsets[level] += 1
|
251 |
|
252 |
# Function to highlight words in a wrapped node string
|
@@ -283,39 +624,40 @@ def generate_subplot(paraphrased_sentence, scheme_sentences, sampled_sentence, h
|
|
283 |
]
|
284 |
|
285 |
# Create figure
|
286 |
-
|
287 |
|
288 |
# Add nodes to the figure
|
289 |
for i, node in enumerate(wrapped_nodes):
|
290 |
colored_node = color_highlighted_words(node, global_color_map)
|
291 |
x, y = positions[i]
|
292 |
-
|
293 |
x=[-x], # Reflect the x coordinate
|
294 |
y=[y],
|
295 |
mode='markers',
|
296 |
marker=dict(size=10, color='blue'),
|
297 |
hoverinfo='none'
|
298 |
))
|
299 |
-
|
300 |
x=-x, # Reflect the x coordinate
|
301 |
y=y,
|
302 |
text=colored_node,
|
303 |
showarrow=False,
|
304 |
xshift=15,
|
305 |
align="center",
|
306 |
-
font=dict(size=
|
307 |
bordercolor='black',
|
308 |
borderwidth=1,
|
309 |
borderpad=2,
|
310 |
bgcolor='white',
|
311 |
-
width=
|
|
|
312 |
)
|
313 |
|
314 |
# Add edges and text above each edge
|
315 |
for i, edge in enumerate(edges):
|
316 |
x0, y0 = positions[edge[0]]
|
317 |
x1, y1 = positions[edge[1]]
|
318 |
-
|
319 |
x=[-x0, -x1], # Reflect the x coordinates
|
320 |
y=[y0, y1],
|
321 |
mode='lines',
|
@@ -330,23 +672,24 @@ def generate_subplot(paraphrased_sentence, scheme_sentences, sampled_sentence, h
|
|
330 |
text_y_position = mid_y + 0.8 # Increase this value to shift the text further upwards
|
331 |
|
332 |
# Add text annotation above the edge
|
333 |
-
|
|
|
|
|
334 |
x=mid_x,
|
335 |
y=text_y_position,
|
336 |
-
text=
|
337 |
showarrow=False,
|
338 |
-
font=dict(size=
|
339 |
align="center"
|
340 |
)
|
341 |
|
342 |
-
|
343 |
showlegend=False,
|
344 |
margin=dict(t=20, b=20, l=20, r=20),
|
345 |
xaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
|
346 |
yaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
|
347 |
-
width=
|
348 |
height=1000 # Adjusted height to accommodate more levels
|
349 |
)
|
350 |
|
351 |
-
return
|
352 |
-
|
|
|
3 |
# import re
|
4 |
# from collections import defaultdict
|
5 |
|
6 |
+
# def generate_subplot1(paraphrased_sentence, scheme_sentences, highlight_info):
|
7 |
# # Combine nodes into one list with appropriate labels
|
8 |
+
# nodes = [paraphrased_sentence] + scheme_sentences
|
9 |
# nodes[0] += ' L0' # Paraphrased sentence is level 0
|
10 |
+
# for i in range(1, len(nodes)):
|
|
|
11 |
# nodes[i] += ' L1' # Scheme sentences are level 1
|
|
|
|
|
12 |
|
13 |
# # Define the highlight_words function
|
14 |
# def highlight_words(sentence, color_map):
|
|
|
20 |
# cleaned_nodes = [re.sub(r'\sL[0-9]$', '', node) for node in nodes]
|
21 |
# global_color_map = dict(highlight_info)
|
22 |
# highlighted_nodes = [highlight_words(node, global_color_map) for node in cleaned_nodes]
|
23 |
+
# wrapped_nodes = ['<br>'.join(textwrap.wrap(node, width=50)) for node in highlighted_nodes]
|
24 |
|
25 |
# # Function to determine tree levels and create edges dynamically
|
26 |
# def get_levels_and_edges(nodes):
|
|
|
36 |
# if level == 1:
|
37 |
# edges.append((root_node, i))
|
38 |
|
39 |
+
# return levels, edges
|
|
|
|
|
40 |
|
41 |
+
# # Get levels and dynamic edges
|
42 |
+
# levels, edges = get_levels_and_edges(nodes)
|
43 |
+
# max_level = max(levels.values(), default=0)
|
44 |
+
|
45 |
+
# # Calculate positions
|
46 |
+
# positions = {}
|
47 |
+
# level_heights = defaultdict(int)
|
48 |
+
# for node, level in levels.items():
|
49 |
+
# level_heights[level] += 1
|
50 |
+
|
51 |
+
# y_offsets = {level: - (height - 1) / 2 for level, height in level_heights.items()}
|
52 |
+
# x_gap = 2
|
53 |
+
# l1_y_gap = 10
|
54 |
+
|
55 |
+
# for node, level in levels.items():
|
56 |
+
# if level == 1:
|
57 |
+
# positions[node] = (-level * x_gap, y_offsets[level] * l1_y_gap)
|
58 |
+
# else:
|
59 |
+
# positions[node] = (-level * x_gap, y_offsets[level] * l1_y_gap)
|
60 |
+
# y_offsets[level] += 1
|
61 |
+
|
62 |
+
# # Function to highlight words in a wrapped node string
|
63 |
+
# def color_highlighted_words(node, color_map):
|
64 |
+
# parts = re.split(r'(\{\{.*?\}\})', node)
|
65 |
+
# colored_parts = []
|
66 |
+
# for part in parts:
|
67 |
+
# match = re.match(r'\{\{(.*?)\}\}', part)
|
68 |
+
# if match:
|
69 |
+
# word = match.group(1)
|
70 |
+
# color = color_map.get(word, 'black')
|
71 |
+
# colored_parts.append(f"<span style='color: {color};'>{word}</span>")
|
72 |
+
# else:
|
73 |
+
# colored_parts.append(part)
|
74 |
+
# return ''.join(colored_parts)
|
75 |
|
76 |
+
# # Define the text for each edge
|
77 |
+
# edge_texts = [
|
78 |
+
# "Highest Entropy Masking",
|
79 |
+
# "Pseudo-random Masking",
|
80 |
+
# "Random Masking",
|
81 |
+
# "Greedy Sampling",
|
82 |
+
# "Temperature Sampling",
|
83 |
+
# "Exponential Minimum Sampling",
|
84 |
+
# "Inverse Transform Sampling",
|
85 |
+
# "Greedy Sampling",
|
86 |
+
# "Temperature Sampling",
|
87 |
+
# "Exponential Minimum Sampling",
|
88 |
+
# "Inverse Transform Sampling",
|
89 |
+
# "Greedy Sampling",
|
90 |
+
# "Temperature Sampling",
|
91 |
+
# "Exponential Minimum Sampling",
|
92 |
+
# "Inverse Transform Sampling"
|
93 |
+
# ]
|
94 |
|
95 |
+
# # Create figure
|
96 |
+
# fig1 = go.Figure()
|
97 |
+
|
98 |
+
# # Add nodes to the figure
|
99 |
+
# for i, node in enumerate(wrapped_nodes):
|
100 |
+
# colored_node = color_highlighted_words(node, global_color_map)
|
101 |
+
# x, y = positions[i]
|
102 |
+
# fig1.add_trace(go.Scatter(
|
103 |
+
# x=[-x], # Reflect the x coordinate
|
104 |
+
# y=[y],
|
105 |
+
# mode='markers',
|
106 |
+
# marker=dict(size=10, color='blue'),
|
107 |
+
# hoverinfo='none'
|
108 |
+
# ))
|
109 |
+
# fig1.add_annotation(
|
110 |
+
# x=-x, # Reflect the x coordinate
|
111 |
+
# y=y,
|
112 |
+
# text=colored_node,
|
113 |
+
# showarrow=False,
|
114 |
+
# xshift=15,
|
115 |
+
# align="center",
|
116 |
+
# font=dict(size=12),
|
117 |
+
# bordercolor='black',
|
118 |
+
# borderwidth=1,
|
119 |
+
# borderpad=2,
|
120 |
+
# bgcolor='white',
|
121 |
+
# width=300,
|
122 |
+
# height=120
|
123 |
+
# )
|
124 |
|
125 |
+
# # Add edges and text above each edge
|
126 |
+
# for i, edge in enumerate(edges):
|
127 |
+
# x0, y0 = positions[edge[0]]
|
128 |
+
# x1, y1 = positions[edge[1]]
|
129 |
+
# fig1.add_trace(go.Scatter(
|
130 |
+
# x=[-x0, -x1], # Reflect the x coordinates
|
131 |
+
# y=[y0, y1],
|
132 |
+
# mode='lines',
|
133 |
+
# line=dict(color='black', width=1)
|
134 |
+
# ))
|
135 |
|
136 |
+
# # Calculate the midpoint of the edge
|
137 |
+
# mid_x = (-x0 + -x1) / 2
|
138 |
+
# mid_y = (y0 + y1) / 2
|
139 |
+
|
140 |
+
# # Adjust y position to shift text upwards
|
141 |
+
# text_y_position = mid_y + 0.8 # Increase this value to shift the text further upwards
|
142 |
+
|
143 |
+
# # Add text annotation above the edge
|
144 |
+
# fig1.add_annotation(
|
145 |
+
# x=mid_x,
|
146 |
+
# y=text_y_position,
|
147 |
+
# text=edge_texts[i], # Use the text specific to this edge
|
148 |
+
# showarrow=False,
|
149 |
+
# font=dict(size=12),
|
150 |
+
# align="center"
|
151 |
+
# )
|
152 |
+
|
153 |
+
# fig1.update_layout(
|
154 |
+
# showlegend=False,
|
155 |
+
# margin=dict(t=20, b=20, l=20, r=20),
|
156 |
+
# xaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
|
157 |
+
# yaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
|
158 |
+
# width=1435, # Adjusted width to accommodate more levels
|
159 |
+
# height=1000 # Adjusted height to accommodate more levels
|
160 |
+
# )
|
161 |
+
|
162 |
+
# return fig1
|
163 |
+
|
164 |
+
|
165 |
+
|
166 |
+
# def generate_subplot2(scheme_sentences, sampled_sentence, highlight_info):
|
167 |
+
# # Combine nodes into one list with appropriate labels
|
168 |
+
# nodes = scheme_sentences + sampled_sentence
|
169 |
+
# para_len = len(scheme_sentences)
|
170 |
+
|
171 |
+
# # Reassign levels: L1 -> L0, L2 -> L1
|
172 |
+
# for i in range(para_len):
|
173 |
+
# nodes[i] += ' L0' # Scheme sentences are now level 0
|
174 |
+
# for i in range(para_len, len(nodes)):
|
175 |
+
# nodes[i] += ' L1' # Sampled sentences are now level 1
|
176 |
+
|
177 |
+
# # Define the highlight_words function
|
178 |
+
# def highlight_words(sentence, color_map):
|
179 |
+
# for word, color in color_map.items():
|
180 |
+
# sentence = re.sub(f"\\b{word}\\b", f"{{{{{word}}}}}", sentence, flags=re.IGNORECASE)
|
181 |
+
# return sentence
|
182 |
+
|
183 |
+
# # Clean and wrap nodes, and highlight specified words globally
|
184 |
+
# cleaned_nodes = [re.sub(r'\sL[0-9]$', '', node) for node in nodes]
|
185 |
+
# global_color_map = dict(highlight_info)
|
186 |
+
# highlighted_nodes = [highlight_words(node, global_color_map) for node in cleaned_nodes]
|
187 |
+
# wrapped_nodes = ['<br>'.join(textwrap.wrap(node, width=80)) for node in highlighted_nodes]
|
188 |
+
|
189 |
+
# # Function to determine tree levels and create edges dynamically
|
190 |
+
# def get_levels_and_edges(nodes):
|
191 |
+
# levels = {}
|
192 |
+
# edges = []
|
193 |
+
# for i, node in enumerate(nodes):
|
194 |
+
# level = int(node.split()[-1][1])
|
195 |
+
# levels[i] = level
|
196 |
+
|
197 |
+
# # Add edges from L0 to all L1 nodes
|
198 |
+
# l0_indices = [i for i, level in levels.items() if level == 0]
|
199 |
+
# l1_indices = [i for i, level in levels.items() if level == 1]
|
200 |
+
|
201 |
+
# # Ensure there are exactly 3 L0 nodes
|
202 |
+
# if len(l0_indices) < 3:
|
203 |
+
# raise ValueError("There should be exactly 3 L0 nodes to attach edges correctly.")
|
204 |
+
|
205 |
+
# # Split L1 nodes into 3 groups of 4 for attaching to L0 nodes
|
206 |
+
# for i, l1_node in enumerate(l1_indices):
|
207 |
+
# if i < 4:
|
208 |
+
# edges.append((l0_indices[0], l1_node)) # Connect to the first L0 node
|
209 |
+
# elif i < 8:
|
210 |
+
# edges.append((l0_indices[1], l1_node)) # Connect to the second L0 node
|
211 |
+
# else:
|
212 |
+
# edges.append((l0_indices[2], l1_node)) # Connect to the third L0 node
|
213 |
|
214 |
# return levels, edges
|
215 |
|
216 |
# # Get levels and dynamic edges
|
217 |
# levels, edges = get_levels_and_edges(nodes)
|
|
|
218 |
|
219 |
# # Calculate positions
|
220 |
# positions = {}
|
|
|
225 |
# y_offsets = {level: - (height - 1) / 2 for level, height in level_heights.items()}
|
226 |
# x_gap = 2
|
227 |
# l1_y_gap = 10
|
|
|
228 |
|
229 |
# for node, level in levels.items():
|
230 |
# if level == 1:
|
231 |
# positions[node] = (-level * x_gap, y_offsets[level] * l1_y_gap)
|
|
|
|
|
232 |
# else:
|
233 |
+
# positions[node] = (-level * x_gap, y_offsets[level] * l1_y_gap)
|
234 |
# y_offsets[level] += 1
|
235 |
|
236 |
# # Function to highlight words in a wrapped node string
|
|
|
247 |
# colored_parts.append(part)
|
248 |
# return ''.join(colored_parts)
|
249 |
|
250 |
+
# # Define the text for each edge
|
251 |
+
# edge_texts = [
|
252 |
+
# "Highest Entropy Masking",
|
253 |
+
# "Pseudo-random Masking",
|
254 |
+
# "Random Masking",
|
255 |
+
# "Greedy Sampling",
|
256 |
+
# "Temperature Sampling",
|
257 |
+
# "Exponential Minimum Sampling",
|
258 |
+
# "Inverse Transform Sampling",
|
259 |
+
# "Greedy Sampling",
|
260 |
+
# "Temperature Sampling",
|
261 |
+
# "Exponential Minimum Sampling",
|
262 |
+
# "Inverse Transform Sampling",
|
263 |
+
# "Greedy Sampling",
|
264 |
+
# "Temperature Sampling",
|
265 |
+
# "Exponential Minimum Sampling",
|
266 |
+
# "Inverse Transform Sampling"
|
267 |
+
# ]
|
268 |
+
|
269 |
# # Create figure
|
270 |
+
# fig2 = go.Figure()
|
271 |
|
272 |
# # Add nodes to the figure
|
273 |
# for i, node in enumerate(wrapped_nodes):
|
274 |
# colored_node = color_highlighted_words(node, global_color_map)
|
275 |
# x, y = positions[i]
|
276 |
+
# fig2.add_trace(go.Scatter(
|
277 |
# x=[-x], # Reflect the x coordinate
|
278 |
# y=[y],
|
279 |
# mode='markers',
|
280 |
# marker=dict(size=10, color='blue'),
|
281 |
# hoverinfo='none'
|
282 |
# ))
|
283 |
+
# fig2.add_annotation(
|
284 |
# x=-x, # Reflect the x coordinate
|
285 |
# y=y,
|
286 |
# text=colored_node,
|
287 |
# showarrow=False,
|
288 |
# xshift=15,
|
289 |
# align="center",
|
290 |
+
# font=dict(size=12),
|
291 |
# bordercolor='black',
|
292 |
# borderwidth=1,
|
293 |
# borderpad=2,
|
294 |
# bgcolor='white',
|
295 |
+
# width=450,
|
296 |
+
# height=65
|
297 |
# )
|
298 |
|
299 |
+
# # Add edges and text above each edge
|
300 |
+
# for i, edge in enumerate(edges):
|
301 |
# x0, y0 = positions[edge[0]]
|
302 |
# x1, y1 = positions[edge[1]]
|
303 |
+
# fig2.add_trace(go.Scatter(
|
304 |
# x=[-x0, -x1], # Reflect the x coordinates
|
305 |
# y=[y0, y1],
|
306 |
# mode='lines',
|
307 |
# line=dict(color='black', width=1)
|
308 |
# ))
|
309 |
|
310 |
+
# # Calculate the midpoint of the edge
|
311 |
+
# mid_x = (-x0 + -x1) / 2
|
312 |
+
# mid_y = (y0 + y1) / 2
|
313 |
+
|
314 |
+
# # Adjust y position to shift text upwards
|
315 |
+
# text_y_position = mid_y + 0.8 # Increase this value to shift the text further upwards
|
316 |
+
|
317 |
+
# # Add text annotation above the edge
|
318 |
+
# fig2.add_annotation(A surprising aspect of tests, specifically self-testing soon after exposure to new material, is that they can significantly improve your ability to learn, apply, and maintain new knowledge.
|
319 |
+
# x=mid_x,
|
320 |
+
# y=text_y_position,
|
321 |
+
# text=edge_texts[i], # Use the text specific to this edge
|
322 |
+
# showarrow=False,
|
323 |
+
# font=dict(size=12),
|
324 |
+
# align="center"
|
325 |
+
# )
|
326 |
+
|
327 |
+
# fig2.update_layout(
|
328 |
# showlegend=False,
|
329 |
# margin=dict(t=20, b=20, l=20, r=20),
|
330 |
# xaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
|
331 |
# yaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
|
332 |
+
# width=1435, # Adjusted width to accommodate more levels
|
333 |
# height=1000 # Adjusted height to accommodate more levels
|
334 |
# )
|
335 |
|
336 |
+
# return fig2
|
337 |
+
|
338 |
|
339 |
import plotly.graph_objects as go
|
340 |
import textwrap
|
341 |
import re
|
342 |
from collections import defaultdict
|
343 |
|
344 |
+
def generate_subplot1(paraphrased_sentence, scheme_sentences, highlight_info, common_grams):
|
345 |
# Combine nodes into one list with appropriate labels
|
346 |
+
nodes = [paraphrased_sentence] + scheme_sentences
|
347 |
nodes[0] += ' L0' # Paraphrased sentence is level 0
|
348 |
+
for i in range(1, len(nodes)):
|
|
|
349 |
nodes[i] += ' L1' # Scheme sentences are level 1
|
350 |
+
|
351 |
+
# Function to apply LCS numbering based on common_grams
|
352 |
+
def apply_lcs_numbering(sentence, common_grams):
|
353 |
+
for idx, lcs in common_grams:
|
354 |
+
# Only replace if the LCS is a whole word (not part of another word)
|
355 |
+
sentence = re.sub(rf"\b{lcs}\b", f"({idx}){lcs}", sentence)
|
356 |
+
return sentence
|
357 |
+
|
358 |
+
# Apply LCS numbering
|
359 |
+
nodes = [apply_lcs_numbering(node, common_grams) for node in nodes]
|
360 |
|
361 |
# Define the highlight_words function
|
362 |
def highlight_words(sentence, color_map):
|
|
|
368 |
cleaned_nodes = [re.sub(r'\sL[0-9]$', '', node) for node in nodes]
|
369 |
global_color_map = dict(highlight_info)
|
370 |
highlighted_nodes = [highlight_words(node, global_color_map) for node in cleaned_nodes]
|
371 |
+
wrapped_nodes = ['<br>'.join(textwrap.wrap(node, width=55)) for node in highlighted_nodes]
|
372 |
|
373 |
# Function to determine tree levels and create edges dynamically
|
374 |
def get_levels_and_edges(nodes):
|
|
|
384 |
if level == 1:
|
385 |
edges.append((root_node, i))
|
386 |
|
387 |
+
return levels, edges
|
|
|
|
|
388 |
|
389 |
+
# Get levels and dynamic edges
|
390 |
+
levels, edges = get_levels_and_edges(nodes)
|
391 |
+
max_level = max(levels.values(), default=0)
|
|
|
|
|
|
|
392 |
|
393 |
+
# Calculate positions
|
394 |
+
positions = {}
|
395 |
+
level_heights = defaultdict(int)
|
396 |
+
for node, level in levels.items():
|
397 |
+
level_heights[level] += 1
|
398 |
+
|
399 |
+
y_offsets = {level: - (height - 1) / 2 for level, height in level_heights.items()}
|
400 |
+
x_gap = 2
|
401 |
+
l1_y_gap = 10
|
402 |
+
|
403 |
+
for node, level in levels.items():
|
404 |
+
if level == 1:
|
405 |
+
positions[node] = (-level * x_gap, y_offsets[level] * l1_y_gap)
|
406 |
+
else:
|
407 |
+
positions[node] = (-level * x_gap, y_offsets[level] * l1_y_gap)
|
408 |
+
y_offsets[level] += 1
|
409 |
+
|
410 |
+
# Function to highlight words in a wrapped node string
|
411 |
+
def color_highlighted_words(node, color_map):
|
412 |
+
parts = re.split(r'(\{\{.*?\}\})', node)
|
413 |
+
colored_parts = []
|
414 |
+
for part in parts:
|
415 |
+
match = re.match(r'\{\{(.*?)\}\}', part)
|
416 |
+
if match:
|
417 |
+
word = match.group(1)
|
418 |
+
color = color_map.get(word, 'black')
|
419 |
+
colored_parts.append(f"<span style='color: {color};'>{word}</span>")
|
420 |
+
else:
|
421 |
+
colored_parts.append(part)
|
422 |
+
return ''.join(colored_parts)
|
423 |
+
|
424 |
+
# Define the text for each edge
|
425 |
+
edge_texts = [
|
426 |
+
"Highest Entropy Masking",
|
427 |
+
"Pseudo-random Masking",
|
428 |
+
"Random Masking",
|
429 |
+
"Greedy Sampling",
|
430 |
+
"Temperature Sampling",
|
431 |
+
"Exponential Minimum Sampling",
|
432 |
+
"Inverse Transform Sampling",
|
433 |
+
"Greedy Sampling",
|
434 |
+
"Temperature Sampling",
|
435 |
+
"Exponential Minimum Sampling",
|
436 |
+
"Inverse Transform Sampling",
|
437 |
+
"Greedy Sampling",
|
438 |
+
"Temperature Sampling",
|
439 |
+
"Exponential Minimum Sampling",
|
440 |
+
"Inverse Transform Sampling"
|
441 |
+
]
|
442 |
+
|
443 |
+
# Create figure
|
444 |
+
fig1 = go.Figure()
|
445 |
+
|
446 |
+
# Add nodes to the figure
|
447 |
+
for i, node in enumerate(wrapped_nodes):
|
448 |
+
colored_node = color_highlighted_words(node, global_color_map)
|
449 |
+
x, y = positions[i]
|
450 |
+
fig1.add_trace(go.Scatter(
|
451 |
+
x=[-x], # Reflect the x coordinate
|
452 |
+
y=[y],
|
453 |
+
mode='markers',
|
454 |
+
marker=dict(size=10, color='blue'),
|
455 |
+
hoverinfo='none'
|
456 |
+
))
|
457 |
+
fig1.add_annotation(
|
458 |
+
x=-x, # Reflect the x coordinate
|
459 |
+
y=y,
|
460 |
+
text=colored_node,
|
461 |
+
showarrow=False,
|
462 |
+
xshift=15,
|
463 |
+
align="center",
|
464 |
+
font=dict(size=12),
|
465 |
+
bordercolor='black',
|
466 |
+
borderwidth=1,
|
467 |
+
borderpad=2,
|
468 |
+
bgcolor='white',
|
469 |
+
width=300,
|
470 |
+
height=120
|
471 |
+
)
|
472 |
+
|
473 |
+
# Add edges and text above each edge
|
474 |
+
for i, edge in enumerate(edges):
|
475 |
+
x0, y0 = positions[edge[0]]
|
476 |
+
x1, y1 = positions[edge[1]]
|
477 |
+
fig1.add_trace(go.Scatter(
|
478 |
+
x=[-x0, -x1], # Reflect the x coordinates
|
479 |
+
y=[y0, y1],
|
480 |
+
mode='lines',
|
481 |
+
line=dict(color='black', width=1)
|
482 |
+
))
|
483 |
+
|
484 |
+
# Calculate the midpoint of the edge
|
485 |
+
mid_x = (-x0 + -x1) / 2
|
486 |
+
mid_y = (y0 + y1) / 2
|
487 |
+
|
488 |
+
# Adjust y position to shift text upwards
|
489 |
+
text_y_position = mid_y + 0.8 # Increase this value to shift the text further upwards
|
490 |
|
491 |
+
# Add text annotation above the edge
|
492 |
+
fig1.add_annotation(
|
493 |
+
x=mid_x,
|
494 |
+
y=text_y_position,
|
495 |
+
text=edge_texts[i], # Use the text specific to this edge
|
496 |
+
showarrow=False,
|
497 |
+
font=dict(size=12),
|
498 |
+
align="center"
|
499 |
+
)
|
500 |
|
501 |
+
fig1.update_layout(
|
502 |
+
showlegend=False,
|
503 |
+
margin=dict(t=20, b=20, l=20, r=20),
|
504 |
+
xaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
|
505 |
+
yaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
|
506 |
+
width=1435, # Adjusted width to accommodate more levels
|
507 |
+
height=1000 # Adjusted height to accommodate more levels
|
508 |
+
)
|
509 |
|
510 |
+
return fig1
|
511 |
+
|
512 |
+
def generate_subplot2(scheme_sentences, sampled_sentence, highlight_info, common_grams):
|
513 |
+
# Combine nodes into one list with appropriate labels
|
514 |
+
nodes = scheme_sentences + sampled_sentence
|
515 |
+
para_len = len(scheme_sentences)
|
516 |
+
|
517 |
+
# Reassign levels: L1 -> L0, L2 -> L1
|
518 |
+
for i in range(para_len):
|
519 |
+
nodes[i] += ' L0' # Scheme sentences are now level 0
|
520 |
+
for i in range(para_len, len(nodes)):
|
521 |
+
nodes[i] += ' L1' # Sampled sentences are now level 1
|
522 |
+
|
523 |
+
# Function to apply LCS numbering based on common_grams
|
524 |
+
def apply_lcs_numbering(sentence, common_grams):
|
525 |
+
for idx, lcs in common_grams:
|
526 |
+
# Only replace if the LCS is a whole word (not part of another word)
|
527 |
+
sentence = re.sub(rf"\b{lcs}\b", f"({idx}){lcs}", sentence)
|
528 |
+
return sentence
|
529 |
+
|
530 |
+
# Apply LCS numbering
|
531 |
+
nodes = [apply_lcs_numbering(node, common_grams) for node in nodes]
|
532 |
+
|
533 |
+
# Define the highlight_words function
|
534 |
+
def highlight_words(sentence, color_map):
|
535 |
+
for word, color in color_map.items():
|
536 |
+
sentence = re.sub(f"\\b{word}\\b", f"{{{{{word}}}}}", sentence, flags=re.IGNORECASE)
|
537 |
+
return sentence
|
538 |
+
|
539 |
+
# Clean and wrap nodes, and highlight specified words globally
|
540 |
+
cleaned_nodes = [re.sub(r'\sL[0-9]$', '', node) for node in nodes]
|
541 |
+
global_color_map = dict(highlight_info)
|
542 |
+
highlighted_nodes = [highlight_words(node, global_color_map) for node in cleaned_nodes]
|
543 |
+
wrapped_nodes = ['<br>'.join(textwrap.wrap(node, width=80)) for node in highlighted_nodes]
|
544 |
+
|
545 |
+
# Function to determine tree levels and create edges dynamically
|
546 |
+
def get_levels_and_edges(nodes):
|
547 |
+
levels = {}
|
548 |
+
edges = []
|
549 |
+
for i, node in enumerate(nodes):
|
550 |
+
level = int(node.split()[-1][1])
|
551 |
+
levels[i] = level
|
552 |
+
|
553 |
+
# Add edges from L0 to all L1 nodes
|
554 |
+
l0_indices = [i for i, level in levels.items() if level == 0]
|
555 |
+
l1_indices = [i for i, level in levels.items() if level == 1]
|
556 |
+
|
557 |
+
# Ensure there are exactly 3 L0 nodes
|
558 |
+
if len(l0_indices) < 3:
|
559 |
+
raise ValueError("There should be exactly 3 L0 nodes to attach edges correctly.")
|
560 |
+
|
561 |
+
# Split L1 nodes into 3 groups of 4 for attaching to L0 nodes
|
562 |
+
for i, l1_node in enumerate(l1_indices):
|
563 |
+
if i < 4:
|
564 |
+
edges.append((l0_indices[0], l1_node)) # Connect to the first L0 node
|
565 |
+
elif i < 8:
|
566 |
+
edges.append((l0_indices[1], l1_node)) # Connect to the second L0 node
|
567 |
+
else:
|
568 |
+
edges.append((l0_indices[2], l1_node)) # Connect to the third L0 node
|
569 |
|
570 |
return levels, edges
|
571 |
|
|
|
582 |
y_offsets = {level: - (height - 1) / 2 for level, height in level_heights.items()}
|
583 |
x_gap = 2
|
584 |
l1_y_gap = 10
|
|
|
585 |
|
586 |
for node, level in levels.items():
|
587 |
if level == 1:
|
588 |
positions[node] = (-level * x_gap, y_offsets[level] * l1_y_gap)
|
|
|
|
|
589 |
else:
|
590 |
+
positions[node] = (-level * x_gap, y_offsets[level] * l1_y_gap)
|
591 |
y_offsets[level] += 1
|
592 |
|
593 |
# Function to highlight words in a wrapped node string
|
|
|
624 |
]
|
625 |
|
626 |
# Create figure
|
627 |
+
fig2 = go.Figure()
|
628 |
|
629 |
# Add nodes to the figure
|
630 |
for i, node in enumerate(wrapped_nodes):
|
631 |
colored_node = color_highlighted_words(node, global_color_map)
|
632 |
x, y = positions[i]
|
633 |
+
fig2.add_trace(go.Scatter(
|
634 |
x=[-x], # Reflect the x coordinate
|
635 |
y=[y],
|
636 |
mode='markers',
|
637 |
marker=dict(size=10, color='blue'),
|
638 |
hoverinfo='none'
|
639 |
))
|
640 |
+
fig2.add_annotation(
|
641 |
x=-x, # Reflect the x coordinate
|
642 |
y=y,
|
643 |
text=colored_node,
|
644 |
showarrow=False,
|
645 |
xshift=15,
|
646 |
align="center",
|
647 |
+
font=dict(size=12),
|
648 |
bordercolor='black',
|
649 |
borderwidth=1,
|
650 |
borderpad=2,
|
651 |
bgcolor='white',
|
652 |
+
width=450,
|
653 |
+
height=65
|
654 |
)
|
655 |
|
656 |
# Add edges and text above each edge
|
657 |
for i, edge in enumerate(edges):
|
658 |
x0, y0 = positions[edge[0]]
|
659 |
x1, y1 = positions[edge[1]]
|
660 |
+
fig2.add_trace(go.Scatter(
|
661 |
x=[-x0, -x1], # Reflect the x coordinates
|
662 |
y=[y0, y1],
|
663 |
mode='lines',
|
|
|
672 |
text_y_position = mid_y + 0.8 # Increase this value to shift the text further upwards
|
673 |
|
674 |
# Add text annotation above the edge
|
675 |
+
# Use a fallback text if we exceed the length of edge_texts
|
676 |
+
text = edge_texts[i] if i < len(edge_texts) else f"Edge {i+1}"
|
677 |
+
fig2.add_annotation(
|
678 |
x=mid_x,
|
679 |
y=text_y_position,
|
680 |
+
text=text, # Use the text specific to this edge
|
681 |
showarrow=False,
|
682 |
+
font=dict(size=12),
|
683 |
align="center"
|
684 |
)
|
685 |
|
686 |
+
fig2.update_layout(
|
687 |
showlegend=False,
|
688 |
margin=dict(t=20, b=20, l=20, r=20),
|
689 |
xaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
|
690 |
yaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
|
691 |
+
width=1435, # Adjusted width to accommodate more levels
|
692 |
height=1000 # Adjusted height to accommodate more levels
|
693 |
)
|
694 |
|
695 |
+
return fig2
|
|