Update app.py
Browse files
app.py
CHANGED
@@ -29,232 +29,29 @@ from termcolor import colored
|
|
29 |
import nltk
|
30 |
from nltk.translate.bleu_score import sentence_bleu
|
31 |
from transformers import BertTokenizer, BertModel
|
32 |
-
import graphviz
|
33 |
import gradio as gr
|
34 |
from tree import generate_plot
|
35 |
from paraphraser import generate_paraphrase
|
|
|
|
|
36 |
|
37 |
nltk.download('stopwords')
|
38 |
|
39 |
|
40 |
-
# Function to Find the Longest Common Substring Words Subsequence
|
41 |
-
def longest_common_subss(original_sentence, paraphrased_sentences):
|
42 |
-
stop_words = set(stopwords.words('english'))
|
43 |
-
original_sentence_lower = original_sentence.lower()
|
44 |
-
paraphrased_sentences_lower = [s.lower() for s in paraphrased_sentences]
|
45 |
-
paraphrased_sentences_no_stopwords = []
|
46 |
-
|
47 |
-
for sentence in paraphrased_sentences_lower:
|
48 |
-
words = re.findall(r'\b\w+\b', sentence)
|
49 |
-
filtered_sentence = ' '.join([word for word in words if word not in stop_words])
|
50 |
-
paraphrased_sentences_no_stopwords.append(filtered_sentence)
|
51 |
-
|
52 |
-
results = []
|
53 |
-
for sentence in paraphrased_sentences_no_stopwords:
|
54 |
-
common_words = set(original_sentence_lower.split()) & set(sentence.split())
|
55 |
-
for word in common_words:
|
56 |
-
sentence = sentence.replace(word, colored(word, 'green'))
|
57 |
-
results.append({
|
58 |
-
"Original Sentence": original_sentence_lower,
|
59 |
-
"Paraphrased Sentence": sentence,
|
60 |
-
"Substrings Word Pair": common_words
|
61 |
-
})
|
62 |
-
return results
|
63 |
-
|
64 |
-
# Function to Find Common Substring Word between each paraphrase sentences
|
65 |
-
def common_substring_word(original_sentence, paraphrased_sentences):
|
66 |
-
stop_words = set(stopwords.words('english'))
|
67 |
-
original_sentence_lower = original_sentence.lower()
|
68 |
-
paraphrased_sentences_lower = [s.lower() for s in paraphrased_sentences]
|
69 |
-
paraphrased_sentences_no_stopwords = []
|
70 |
-
|
71 |
-
for sentence in paraphrased_sentences_lower:
|
72 |
-
words = re.findall(r'\b\w+\b', sentence)
|
73 |
-
filtered_sentence = ' '.join([word for word in words if word not in stop_words])
|
74 |
-
paraphrased_sentences_no_stopwords.append(filtered_sentence)
|
75 |
-
|
76 |
-
results = []
|
77 |
-
for idx, sentence in enumerate(paraphrased_sentences_no_stopwords):
|
78 |
-
common_words = set(original_sentence_lower.split()) & set(sentence.split())
|
79 |
-
common_substrings = ', '.join(sorted(common_words))
|
80 |
-
for word in common_words:
|
81 |
-
sentence = sentence.replace(word, colored(word, 'green'))
|
82 |
-
results.append({
|
83 |
-
f"Paraphrased Sentence {idx+1}": sentence,
|
84 |
-
"Common Substrings": common_substrings
|
85 |
-
})
|
86 |
-
return results
|
87 |
-
|
88 |
-
|
89 |
-
import re
|
90 |
-
from nltk.corpus import stopwords
|
91 |
-
|
92 |
-
def find_common_subsequences(sentence, str_list):
|
93 |
-
stop_words = set(stopwords.words('english'))
|
94 |
-
sentence = sentence.lower()
|
95 |
-
|
96 |
-
str_list = [s.lower() for s in str_list]
|
97 |
-
|
98 |
-
def is_present(lcs, str_list):
|
99 |
-
for string in str_list:
|
100 |
-
if lcs not in string:
|
101 |
-
return False
|
102 |
-
return True
|
103 |
-
|
104 |
-
def remove_stop_words_and_special_chars(sentence):
|
105 |
-
sentence = re.sub(r'[^\w\s]', '', sentence)
|
106 |
-
words = sentence.split()
|
107 |
-
filtered_words = [word for word in words if word.lower() not in stop_words]
|
108 |
-
return " ".join(filtered_words)
|
109 |
-
|
110 |
-
sentence = remove_stop_words_and_special_chars(sentence)
|
111 |
-
str_list = [remove_stop_words_and_special_chars(s) for s in str_list]
|
112 |
-
|
113 |
-
words = sentence.split(" ")
|
114 |
-
common_grams = []
|
115 |
-
added_phrases = set()
|
116 |
-
|
117 |
-
def is_covered(subseq, added_phrases):
|
118 |
-
for phrase in added_phrases:
|
119 |
-
if subseq in phrase:
|
120 |
-
return True
|
121 |
-
return False
|
122 |
-
|
123 |
-
for i in range(len(words) - 4):
|
124 |
-
penta = " ".join(words[i:i+5])
|
125 |
-
if is_present(penta, str_list):
|
126 |
-
common_grams.append(penta)
|
127 |
-
added_phrases.add(penta)
|
128 |
-
|
129 |
-
for i in range(len(words) - 3):
|
130 |
-
quad = " ".join(words[i:i+4])
|
131 |
-
if is_present(quad, str_list) and not is_covered(quad, added_phrases):
|
132 |
-
common_grams.append(quad)
|
133 |
-
added_phrases.add(quad)
|
134 |
-
|
135 |
-
for i in range(len(words) - 2):
|
136 |
-
tri = " ".join(words[i:i+3])
|
137 |
-
if is_present(tri, str_list) and not is_covered(tri, added_phrases):
|
138 |
-
common_grams.append(tri)
|
139 |
-
added_phrases.add(tri)
|
140 |
-
|
141 |
-
for i in range(len(words) - 1):
|
142 |
-
bi = " ".join(words[i:i+2])
|
143 |
-
if is_present(bi, str_list) and not is_covered(bi, added_phrases):
|
144 |
-
common_grams.append(bi)
|
145 |
-
added_phrases.add(bi)
|
146 |
-
|
147 |
-
for i in range(len(words)):
|
148 |
-
uni = words[i]
|
149 |
-
if is_present(uni, str_list) and not is_covered(uni, added_phrases):
|
150 |
-
common_grams.append(uni)
|
151 |
-
added_phrases.add(uni)
|
152 |
-
|
153 |
-
return common_grams
|
154 |
-
|
155 |
-
def llm_output(prompt):
|
156 |
-
return prompt, prompt
|
157 |
-
|
158 |
-
def highlight_phrases_with_colors(sentences, phrases):
|
159 |
-
color_map = {}
|
160 |
-
color_index = 0
|
161 |
-
highlighted_html = []
|
162 |
-
idx = 1
|
163 |
-
for sentence in sentences:
|
164 |
-
sentence_with_idx = f"{idx}. {sentence}"
|
165 |
-
idx += 1
|
166 |
-
highlighted_sentence = sentence_with_idx
|
167 |
-
phrase_count = 0
|
168 |
-
words = re.findall(r'\b\w+\b', sentence)
|
169 |
-
word_index = 1
|
170 |
-
for phrase in phrases:
|
171 |
-
if phrase not in color_map:
|
172 |
-
color_map[phrase] = f'hsl({color_index * 60 % 360}, 70%, 80%)'
|
173 |
-
color_index += 1
|
174 |
-
escaped_phrase = re.escape(phrase)
|
175 |
-
pattern = rf'\b{escaped_phrase}\b'
|
176 |
-
highlighted_sentence, num_replacements = re.subn(
|
177 |
-
pattern,
|
178 |
-
lambda m, count=phrase_count, color=color_map[phrase], index=word_index: (
|
179 |
-
f'<span style="background-color: {color}; font-weight: bold;'
|
180 |
-
f' padding: 2px 4px; border-radius: 2px; position: relative;">'
|
181 |
-
f'<span style="background-color: black; color: white; border-radius: 50%;'
|
182 |
-
f' padding: 2px 5px; margin-right: 5px;">{index}</span>'
|
183 |
-
f'{m.group(0)}'
|
184 |
-
f'</span>'
|
185 |
-
),
|
186 |
-
highlighted_sentence,
|
187 |
-
flags=re.IGNORECASE
|
188 |
-
)
|
189 |
-
if num_replacements > 0:
|
190 |
-
phrase_count += 1
|
191 |
-
word_index += 1
|
192 |
-
highlighted_html.append(highlighted_sentence)
|
193 |
-
final_html = "<br><br>".join(highlighted_html)
|
194 |
-
return f'''
|
195 |
-
<div style="border: solid 1px #; padding: 16px; background-color: #FFFFFF; color: #374151; box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1); border-radius: 2px;">
|
196 |
-
<h3 style="margin-top: 0; font-size: 1em; color: #111827;">Paraphrased And Highlighted Text</h3>
|
197 |
-
<div style="background-color: #F5F5F5; line-height: 1.6; padding: 15px; border-radius: 2px;">{final_html}</div>
|
198 |
-
</div>
|
199 |
-
'''
|
200 |
-
|
201 |
-
import re
|
202 |
-
|
203 |
-
def highlight_phrases_with_colors_single_sentence(sentence, phrases):
|
204 |
-
color_map = {}
|
205 |
-
color_index = 0
|
206 |
-
highlighted_sentence = sentence
|
207 |
-
phrase_count = 0
|
208 |
-
words = re.findall(r'\b\w+\b', sentence)
|
209 |
-
word_index = 1
|
210 |
-
|
211 |
-
for phrase in phrases:
|
212 |
-
if phrase not in color_map:
|
213 |
-
color_map[phrase] = f'hsl({color_index * 60 % 360}, 70%, 80%)'
|
214 |
-
color_index += 1
|
215 |
-
escaped_phrase = re.escape(phrase)
|
216 |
-
pattern = rf'\b{escaped_phrase}\b'
|
217 |
-
highlighted_sentence, num_replacements = re.subn(
|
218 |
-
pattern,
|
219 |
-
lambda m, count=phrase_count, color=color_map[phrase], index=word_index: (
|
220 |
-
f'<span style="background-color: {color}; font-weight: bold;'
|
221 |
-
f' padding: 2px 4px; border-radius: 2px; position: relative;">'
|
222 |
-
f'<span style="background-color: black; color: white; border-radius: 50%;'
|
223 |
-
f' padding: 2px 5px; margin-right: 5px;">{index}</span>'
|
224 |
-
f'{m.group(0)}'
|
225 |
-
f'</span>'
|
226 |
-
),
|
227 |
-
highlighted_sentence,
|
228 |
-
flags=re.IGNORECASE
|
229 |
-
)
|
230 |
-
if num_replacements > 0:
|
231 |
-
phrase_count += 1
|
232 |
-
word_index += 1
|
233 |
-
|
234 |
-
final_html = highlighted_sentence
|
235 |
-
return f'''
|
236 |
-
<div style="border: solid 1px #; padding: 16px; background-color: #FFFFFF; color: #374151; box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1); border-radius: 2px;">
|
237 |
-
<h3 style="margin-top: 0; font-size: 1em; color: #111827;">Selected Sentence</h3>
|
238 |
-
<div style="background-color: #F5F5F5; line-height: 1.6; padding: 15px; border-radius: 2px;">{final_html}</div>
|
239 |
-
</div>
|
240 |
-
'''
|
241 |
-
|
242 |
-
|
243 |
# Function for the Gradio interface
|
244 |
def model(prompt):
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
generated_highlighted = highlight_phrases_with_colors_single_sentence(generated, common_grams)
|
252 |
-
result = highlight_phrases_with_colors(res, common_grams)
|
253 |
tree = generate_plot(sentence)
|
254 |
-
return
|
255 |
|
256 |
-
|
257 |
-
|
|
|
258 |
|
259 |
with gr.Row():
|
260 |
user_input = gr.Textbox(label="User Prompt")
|
@@ -263,21 +60,22 @@ with gr.Blocks(theme = gr.themes.Monochrome()) as demo:
|
|
263 |
submit_button = gr.Button("Submit")
|
264 |
clear_button = gr.Button("Clear")
|
265 |
|
266 |
-
with gr.Row():
|
267 |
-
ai_output = gr.Textbox(label="AI-generated Text (Llama3)")
|
268 |
-
|
269 |
with gr.Row():
|
270 |
selected_sentence = gr.HTML()
|
271 |
|
272 |
with gr.Row():
|
273 |
html_output = gr.HTML()
|
274 |
|
|
|
|
|
|
|
275 |
with gr.Row():
|
276 |
tree = gr.Plot()
|
277 |
|
278 |
-
submit_button.click(model, inputs=user_input, outputs=[
|
279 |
clear_button.click(lambda: "", inputs=None, outputs=user_input)
|
280 |
-
clear_button.click(lambda: "", inputs=None, outputs=[
|
281 |
|
282 |
# Launch the demo
|
283 |
-
demo.launch(share=True)
|
|
|
|
29 |
import nltk
|
30 |
from nltk.translate.bleu_score import sentence_bleu
|
31 |
from transformers import BertTokenizer, BertModel
|
|
|
32 |
import gradio as gr
|
33 |
from tree import generate_plot
|
34 |
from paraphraser import generate_paraphrase
|
35 |
+
from lcs import find_common_subsequences
|
36 |
+
from highlighter import highlight_common_words
|
37 |
|
38 |
nltk.download('stopwords')
|
39 |
|
40 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
# Function for the Gradio interface
|
42 |
def model(prompt):
|
43 |
+
sentence = prompt
|
44 |
+
paraphrased_sentences = generate_paraphrase(sentence)
|
45 |
+
common_grams = find_common_subsequences(sentence, paraphrased_sentences)
|
46 |
+
highlighted_user_prompt = highlight_common_words(common_grams, [sentence]) # Pass the sentence as a list
|
47 |
+
highlighted_paraphrased_sentences = highlight_common_words(common_grams, paraphrased_sentences) # Fix parameter order
|
48 |
+
discarded_sentences = []
|
|
|
|
|
49 |
tree = generate_plot(sentence)
|
50 |
+
return highlighted_user_prompt, highlighted_paraphrased_sentences, discarded_sentences, tree
|
51 |
|
52 |
+
|
53 |
+
with gr.Blocks(theme=gr.themes.Monochrome()) as demo:
|
54 |
+
gr.Markdown("# **AIISC Watermarking Model**")
|
55 |
|
56 |
with gr.Row():
|
57 |
user_input = gr.Textbox(label="User Prompt")
|
|
|
60 |
submit_button = gr.Button("Submit")
|
61 |
clear_button = gr.Button("Clear")
|
62 |
|
|
|
|
|
|
|
63 |
with gr.Row():
|
64 |
selected_sentence = gr.HTML()
|
65 |
|
66 |
with gr.Row():
|
67 |
html_output = gr.HTML()
|
68 |
|
69 |
+
with gr.Row():
|
70 |
+
discarded_sentences = gr.Textbox(label="Discarded Sentences")
|
71 |
+
|
72 |
with gr.Row():
|
73 |
tree = gr.Plot()
|
74 |
|
75 |
+
submit_button.click(model, inputs=user_input, outputs=[selected_sentence, html_output, discarded_sentences, tree])
|
76 |
clear_button.click(lambda: "", inputs=None, outputs=user_input)
|
77 |
+
clear_button.click(lambda: "", inputs=None, outputs=[selected_sentence, html_output, discarded_sentences, tree])
|
78 |
|
79 |
# Launch the demo
|
80 |
+
demo.launch(share=True)
|
81 |
+
|