import torch from transformers import AutoTokenizer, AutoModelForMaskedLM from transformers import pipeline import random from nltk.corpus import stopwords import nltk nltk.download('stopwords') import math from vocabulary_split import split_vocabulary, filter_logits import abc from typing import List # Load tokenizer and model for masked language model tokenizer = AutoTokenizer.from_pretrained("bert-large-cased-whole-word-masking") model = AutoModelForMaskedLM.from_pretrained("bert-large-cased-whole-word-masking") fill_mask = pipeline("fill-mask", model=model, tokenizer=tokenizer) # Get permissible vocabulary permissible, _ = split_vocabulary(seed=42) permissible_indices = torch.tensor([i in permissible.values() for i in range(len(tokenizer))]) def get_logits_for_mask(model, tokenizer, sentence): inputs = tokenizer(sentence, return_tensors="pt") mask_token_index = torch.where(inputs["input_ids"] == tokenizer.mask_token_id)[1] with torch.no_grad(): outputs = model(**inputs) logits = outputs.logits mask_token_logits = logits[0, mask_token_index, :] return mask_token_logits.squeeze() # Abstract Masking Strategy class MaskingStrategy(abc.ABC): @abc.abstractmethod def select_words_to_mask(self, words: List[str], **kwargs) -> List[int]: """ Given a list of words, return the indices of words to mask. """ pass # Specific Masking Strategies class RandomNonStopwordMasking(MaskingStrategy): def __init__(self, num_masks: int = 1): self.num_masks = num_masks self.stop_words = set(stopwords.words('english')) def select_words_to_mask(self, words: List[str], **kwargs) -> List[int]: non_stop_indices = [i for i, word in enumerate(words) if word.lower() not in self.stop_words] if not non_stop_indices: return [] num_masks = min(self.num_masks, len(non_stop_indices)) return random.sample(non_stop_indices, num_masks) class HighEntropyMasking(MaskingStrategy): def __init__(self, num_masks: int = 1): self.num_masks = num_masks def select_words_to_mask(self, words: List[str], sentence: str, model, tokenizer, permissible_indices) -> List[int]: candidate_indices = [i for i, word in enumerate(words) if word.lower() not in set(stopwords.words('english'))] if not candidate_indices: return [] entropy_scores = {} for idx in candidate_indices: masked_sentence = ' '.join(words[:idx] + ['[MASK]'] + words[idx+1:]) logits = get_logits_for_mask(model, tokenizer, masked_sentence) filtered_logits = filter_logits(logits, permissible_indices) probs = torch.softmax(filtered_logits, dim=-1) top_5_probs = probs.topk(5).values entropy = -torch.sum(top_5_probs * torch.log(top_5_probs + 1e-10)).item() entropy_scores[idx] = entropy # Select top N indices with highest entropy sorted_indices = sorted(entropy_scores, key=entropy_scores.get, reverse=True) return sorted_indices[:self.num_masks] class PseudoRandomNonStopwordMasking(MaskingStrategy): def __init__(self, num_masks: int = 1, seed: int = 10): self.num_masks = num_masks self.seed = seed self.stop_words = set(stopwords.words('english')) def select_words_to_mask(self, words: List[str], **kwargs) -> List[int]: non_stop_indices = [i for i, word in enumerate(words) if word.lower() not in self.stop_words] if not non_stop_indices: return [] random.seed(self.seed) num_masks = min(self.num_masks, len(non_stop_indices)) return random.sample(non_stop_indices, num_masks) class CompositeMaskingStrategy(MaskingStrategy): def __init__(self, strategies: List[MaskingStrategy]): self.strategies = strategies def select_words_to_mask(self, words: List[str], **kwargs) -> List[int]: selected_indices = [] for strategy in self.strategies: if isinstance(strategy, HighEntropyMasking): selected = strategy.select_words_to_mask(words, **kwargs) else: selected = strategy.select_words_to_mask(words) selected_indices.extend(selected) return list(set(selected_indices)) # Remove duplicates # Refactored mask_between_lcs function def mask_between_lcs(sentence, lcs_points, masking_strategy: MaskingStrategy, model, tokenizer, permissible_indices): words = sentence.split() masked_indices = [] segments = [] # Define segments based on LCS points previous = 0 for point in lcs_points: if point > previous: segments.append((previous, point)) previous = point + 1 if previous < len(words): segments.append((previous, len(words))) # Collect all indices to mask from each segment for start, end in segments: segment_words = words[start:end] if isinstance(masking_strategy, HighEntropyMasking): selected = masking_strategy.select_words_to_mask(segment_words, sentence, model, tokenizer, permissible_indices) else: selected = masking_strategy.select_words_to_mask(segment_words) # Adjust indices relative to the whole sentence for idx in selected: masked_idx = start + idx if masked_idx not in masked_indices: masked_indices.append(masked_idx) # Apply masking for idx in masked_indices: words[idx] = '[MASK]' masked_sentence = ' '.join(words) logits = get_logits_for_mask(model, tokenizer, masked_sentence) # Process each masked token top_words_list = [] logits_list = [] for i, idx in enumerate(masked_indices): logits_i = logits[i] if logits_i.dim() > 1: logits_i = logits_i.squeeze() filtered_logits_i = filter_logits(logits_i, permissible_indices) logits_list.append(filtered_logits_i.tolist()) top_5_indices = filtered_logits_i.topk(5).indices.tolist() top_words = [tokenizer.decode([i]) for i in top_5_indices] top_words_list.append(top_words) return masked_sentence, logits_list, top_words_list # Example Usage if __name__ == "__main__": # Example sentence and LCS points sentence = "This is a sample sentence with some LCS points" lcs_points = [2, 5, 8] # Indices of LCS points # Initialize masking strategies random_non_stopword_strategy = RandomNonStopwordMasking(num_masks=1) high_entropy_strategy = HighEntropyMasking(num_masks=1) pseudo_random_strategy = PseudoRandomNonStopwordMasking(num_masks=1, seed=10) composite_strategy = CompositeMaskingStrategy([ RandomNonStopwordMasking(num_masks=1), HighEntropyMasking(num_masks=1) ]) # Choose a strategy chosen_strategy = composite_strategy # You can choose any initialized strategy # Apply masking masked_sentence, logits_list, top_words_list = mask_between_lcs( sentence, lcs_points, masking_strategy=chosen_strategy, model=model, tokenizer=tokenizer, permissible_indices=permissible_indices ) print("Masked Sentence:", masked_sentence) for idx, top_words in enumerate(top_words_list): print(f"Top words for mask {idx+1}:", top_words)