# import plotly.graph_objects as go
# import textwrap
# import re
# from collections import defaultdict
# def generate_subplot1(paraphrased_sentence, scheme_sentences, highlight_info):
# # Combine nodes into one list with appropriate labels
# nodes = [paraphrased_sentence] + scheme_sentences
# nodes[0] += ' L0' # Paraphrased sentence is level 0
# for i in range(1, len(nodes)):
# nodes[i] += ' L1' # Scheme sentences are level 1
# # Define the highlight_words function
# def highlight_words(sentence, color_map):
# for word, color in color_map.items():
# sentence = re.sub(f"\\b{word}\\b", f"{{{{{word}}}}}", sentence, flags=re.IGNORECASE)
# return sentence
# # Clean and wrap nodes, and highlight specified words globally
# cleaned_nodes = [re.sub(r'\sL[0-9]$', '', node) for node in nodes]
# global_color_map = dict(highlight_info)
# highlighted_nodes = [highlight_words(node, global_color_map) for node in cleaned_nodes]
# wrapped_nodes = ['
'.join(textwrap.wrap(node, width=50)) for node in highlighted_nodes]
# # Function to determine tree levels and create edges dynamically
# def get_levels_and_edges(nodes):
# levels = {}
# edges = []
# for i, node in enumerate(nodes):
# level = int(node.split()[-1][1])
# levels[i] = level
# # Add edges from L0 to all L1 nodes
# root_node = next(i for i, level in levels.items() if level == 0)
# for i, level in levels.items():
# if level == 1:
# edges.append((root_node, i))
# return levels, edges
# # Get levels and dynamic edges
# levels, edges = get_levels_and_edges(nodes)
# max_level = max(levels.values(), default=0)
# # Calculate positions
# positions = {}
# level_heights = defaultdict(int)
# for node, level in levels.items():
# level_heights[level] += 1
# y_offsets = {level: - (height - 1) / 2 for level, height in level_heights.items()}
# x_gap = 2
# l1_y_gap = 10
# for node, level in levels.items():
# if level == 1:
# positions[node] = (-level * x_gap, y_offsets[level] * l1_y_gap)
# else:
# positions[node] = (-level * x_gap, y_offsets[level] * l1_y_gap)
# y_offsets[level] += 1
# # Function to highlight words in a wrapped node string
# def color_highlighted_words(node, color_map):
# parts = re.split(r'(\{\{.*?\}\})', node)
# colored_parts = []
# for part in parts:
# match = re.match(r'\{\{(.*?)\}\}', part)
# if match:
# word = match.group(1)
# color = color_map.get(word, 'black')
# colored_parts.append(f"{word}")
# else:
# colored_parts.append(part)
# return ''.join(colored_parts)
# # Define the text for each edge
# edge_texts = [
# "Highest Entropy Masking",
# "Pseudo-random Masking",
# "Random Masking",
# "Greedy Sampling",
# "Temperature Sampling",
# "Exponential Minimum Sampling",
# "Inverse Transform Sampling",
# "Greedy Sampling",
# "Temperature Sampling",
# "Exponential Minimum Sampling",
# "Inverse Transform Sampling",
# "Greedy Sampling",
# "Temperature Sampling",
# "Exponential Minimum Sampling",
# "Inverse Transform Sampling"
# ]
# # Create figure
# fig1 = go.Figure()
# # Add nodes to the figure
# for i, node in enumerate(wrapped_nodes):
# colored_node = color_highlighted_words(node, global_color_map)
# x, y = positions[i]
# fig1.add_trace(go.Scatter(
# x=[-x], # Reflect the x coordinate
# y=[y],
# mode='markers',
# marker=dict(size=10, color='blue'),
# hoverinfo='none'
# ))
# fig1.add_annotation(
# x=-x, # Reflect the x coordinate
# y=y,
# text=colored_node,
# showarrow=False,
# xshift=15,
# align="center",
# font=dict(size=12),
# bordercolor='black',
# borderwidth=1,
# borderpad=2,
# bgcolor='white',
# width=300,
# height=120
# )
# # Add edges and text above each edge
# for i, edge in enumerate(edges):
# x0, y0 = positions[edge[0]]
# x1, y1 = positions[edge[1]]
# fig1.add_trace(go.Scatter(
# x=[-x0, -x1], # Reflect the x coordinates
# y=[y0, y1],
# mode='lines',
# line=dict(color='black', width=1)
# ))
# # Calculate the midpoint of the edge
# mid_x = (-x0 + -x1) / 2
# mid_y = (y0 + y1) / 2
# # Adjust y position to shift text upwards
# text_y_position = mid_y + 0.8 # Increase this value to shift the text further upwards
# # Add text annotation above the edge
# fig1.add_annotation(
# x=mid_x,
# y=text_y_position,
# text=edge_texts[i], # Use the text specific to this edge
# showarrow=False,
# font=dict(size=12),
# align="center"
# )
# fig1.update_layout(
# showlegend=False,
# margin=dict(t=20, b=20, l=20, r=20),
# xaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
# yaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
# width=1435, # Adjusted width to accommodate more levels
# height=1000 # Adjusted height to accommodate more levels
# )
# return fig1
# def generate_subplot2(scheme_sentences, sampled_sentence, highlight_info):
# # Combine nodes into one list with appropriate labels
# nodes = scheme_sentences + sampled_sentence
# para_len = len(scheme_sentences)
# # Reassign levels: L1 -> L0, L2 -> L1
# for i in range(para_len):
# nodes[i] += ' L0' # Scheme sentences are now level 0
# for i in range(para_len, len(nodes)):
# nodes[i] += ' L1' # Sampled sentences are now level 1
# # Define the highlight_words function
# def highlight_words(sentence, color_map):
# for word, color in color_map.items():
# sentence = re.sub(f"\\b{word}\\b", f"{{{{{word}}}}}", sentence, flags=re.IGNORECASE)
# return sentence
# # Clean and wrap nodes, and highlight specified words globally
# cleaned_nodes = [re.sub(r'\sL[0-9]$', '', node) for node in nodes]
# global_color_map = dict(highlight_info)
# highlighted_nodes = [highlight_words(node, global_color_map) for node in cleaned_nodes]
# wrapped_nodes = ['
'.join(textwrap.wrap(node, width=80)) for node in highlighted_nodes]
# # Function to determine tree levels and create edges dynamically
# def get_levels_and_edges(nodes):
# levels = {}
# edges = []
# for i, node in enumerate(nodes):
# level = int(node.split()[-1][1])
# levels[i] = level
# # Add edges from L0 to all L1 nodes
# l0_indices = [i for i, level in levels.items() if level == 0]
# l1_indices = [i for i, level in levels.items() if level == 1]
# # Ensure there are exactly 3 L0 nodes
# if len(l0_indices) < 3:
# raise ValueError("There should be exactly 3 L0 nodes to attach edges correctly.")
# # Split L1 nodes into 3 groups of 4 for attaching to L0 nodes
# for i, l1_node in enumerate(l1_indices):
# if i < 4:
# edges.append((l0_indices[0], l1_node)) # Connect to the first L0 node
# elif i < 8:
# edges.append((l0_indices[1], l1_node)) # Connect to the second L0 node
# else:
# edges.append((l0_indices[2], l1_node)) # Connect to the third L0 node
# return levels, edges
# # Get levels and dynamic edges
# levels, edges = get_levels_and_edges(nodes)
# # Calculate positions
# positions = {}
# level_heights = defaultdict(int)
# for node, level in levels.items():
# level_heights[level] += 1
# y_offsets = {level: - (height - 1) / 2 for level, height in level_heights.items()}
# x_gap = 2
# l1_y_gap = 10
# for node, level in levels.items():
# if level == 1:
# positions[node] = (-level * x_gap, y_offsets[level] * l1_y_gap)
# else:
# positions[node] = (-level * x_gap, y_offsets[level] * l1_y_gap)
# y_offsets[level] += 1
# # Function to highlight words in a wrapped node string
# def color_highlighted_words(node, color_map):
# parts = re.split(r'(\{\{.*?\}\})', node)
# colored_parts = []
# for part in parts:
# match = re.match(r'\{\{(.*?)\}\}', part)
# if match:
# word = match.group(1)
# color = color_map.get(word, 'black')
# colored_parts.append(f"{word}")
# else:
# colored_parts.append(part)
# return ''.join(colored_parts)
# # Define the text for each edge
# edge_texts = [
# "Highest Entropy Masking",
# "Pseudo-random Masking",
# "Random Masking",
# "Greedy Sampling",
# "Temperature Sampling",
# "Exponential Minimum Sampling",
# "Inverse Transform Sampling",
# "Greedy Sampling",
# "Temperature Sampling",
# "Exponential Minimum Sampling",
# "Inverse Transform Sampling",
# "Greedy Sampling",
# "Temperature Sampling",
# "Exponential Minimum Sampling",
# "Inverse Transform Sampling"
# ]
# # Create figure
# fig2 = go.Figure()
# # Add nodes to the figure
# for i, node in enumerate(wrapped_nodes):
# colored_node = color_highlighted_words(node, global_color_map)
# x, y = positions[i]
# fig2.add_trace(go.Scatter(
# x=[-x], # Reflect the x coordinate
# y=[y],
# mode='markers',
# marker=dict(size=10, color='blue'),
# hoverinfo='none'
# ))
# fig2.add_annotation(
# x=-x, # Reflect the x coordinate
# y=y,
# text=colored_node,
# showarrow=False,
# xshift=15,
# align="center",
# font=dict(size=12),
# bordercolor='black',
# borderwidth=1,
# borderpad=2,
# bgcolor='white',
# width=450,
# height=65
# )
# # Add edges and text above each edge
# for i, edge in enumerate(edges):
# x0, y0 = positions[edge[0]]
# x1, y1 = positions[edge[1]]
# fig2.add_trace(go.Scatter(
# x=[-x0, -x1], # Reflect the x coordinates
# y=[y0, y1],
# mode='lines',
# line=dict(color='black', width=1)
# ))
# # Calculate the midpoint of the edge
# mid_x = (-x0 + -x1) / 2
# mid_y = (y0 + y1) / 2
# # Adjust y position to shift text upwards
# text_y_position = mid_y + 0.8 # Increase this value to shift the text further upwards
# # Add text annotation above the edge
# fig2.add_annotation(A surprising aspect of tests, specifically self-testing soon after exposure to new material, is that they can significantly improve your ability to learn, apply, and maintain new knowledge.
# x=mid_x,
# y=text_y_position,
# text=edge_texts[i], # Use the text specific to this edge
# showarrow=False,
# font=dict(size=12),
# align="center"
# )
# fig2.update_layout(
# showlegend=False,
# margin=dict(t=20, b=20, l=20, r=20),
# xaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
# yaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
# width=1435, # Adjusted width to accommodate more levels
# height=1000 # Adjusted height to accommodate more levels
# )
# return fig2
import plotly.graph_objects as go
import textwrap
import re
from collections import defaultdict
def generate_subplot1(paraphrased_sentence, scheme_sentences, highlight_info, common_grams):
# Combine nodes into one list with appropriate labels
nodes = [paraphrased_sentence] + scheme_sentences
nodes[0] += ' L0' # Paraphrased sentence is level 0
for i in range(1, len(nodes)):
nodes[i] += ' L1' # Scheme sentences are level 1
# Function to apply LCS numbering based on common_grams
def apply_lcs_numbering(sentence, common_grams):
for idx, lcs in common_grams:
# Only replace if the LCS is a whole word (not part of another word)
sentence = re.sub(rf"\b{lcs}\b", f"({idx}){lcs}", sentence)
return sentence
# Apply LCS numbering
nodes = [apply_lcs_numbering(node, common_grams) for node in nodes]
# Define the highlight_words function
def highlight_words(sentence, color_map):
for word, color in color_map.items():
sentence = re.sub(f"\\b{word}\\b", f"{{{{{word}}}}}", sentence, flags=re.IGNORECASE)
return sentence
# Clean and wrap nodes, and highlight specified words globally
cleaned_nodes = [re.sub(r'\sL[0-9]$', '', node) for node in nodes]
global_color_map = dict(highlight_info)
highlighted_nodes = [highlight_words(node, global_color_map) for node in cleaned_nodes]
wrapped_nodes = ['
'.join(textwrap.wrap(node, width=55)) for node in highlighted_nodes]
# Function to determine tree levels and create edges dynamically
def get_levels_and_edges(nodes):
levels = {}
edges = []
for i, node in enumerate(nodes):
level = int(node.split()[-1][1])
levels[i] = level
# Add edges from L0 to all L1 nodes
root_node = next(i for i, level in levels.items() if level == 0)
for i, level in levels.items():
if level == 1:
edges.append((root_node, i))
return levels, edges
# Get levels and dynamic edges
levels, edges = get_levels_and_edges(nodes)
max_level = max(levels.values(), default=0)
# Calculate positions
positions = {}
level_heights = defaultdict(int)
for node, level in levels.items():
level_heights[level] += 1
y_offsets = {level: - (height - 1) / 2 for level, height in level_heights.items()}
x_gap = 2
l1_y_gap = 10
for node, level in levels.items():
if level == 1:
positions[node] = (-level * x_gap, y_offsets[level] * l1_y_gap)
else:
positions[node] = (-level * x_gap, y_offsets[level] * l1_y_gap)
y_offsets[level] += 1
# Function to highlight words in a wrapped node string
def color_highlighted_words(node, color_map):
parts = re.split(r'(\{\{.*?\}\})', node)
colored_parts = []
for part in parts:
match = re.match(r'\{\{(.*?)\}\}', part)
if match:
word = match.group(1)
color = color_map.get(word, 'black')
colored_parts.append(f"{word}")
else:
colored_parts.append(part)
return ''.join(colored_parts)
# Define the text for each edge
edge_texts = [
"Highest Entropy Masking",
"Pseudo-random Masking",
"Random Masking",
"Greedy Sampling",
"Temperature Sampling",
"Exponential Minimum Sampling",
"Inverse Transform Sampling",
"Greedy Sampling",
"Temperature Sampling",
"Exponential Minimum Sampling",
"Inverse Transform Sampling",
"Greedy Sampling",
"Temperature Sampling",
"Exponential Minimum Sampling",
"Inverse Transform Sampling"
]
# Create figure
fig1 = go.Figure()
# Add nodes to the figure
for i, node in enumerate(wrapped_nodes):
colored_node = color_highlighted_words(node, global_color_map)
x, y = positions[i]
fig1.add_trace(go.Scatter(
x=[-x], # Reflect the x coordinate
y=[y],
mode='markers',
marker=dict(size=10, color='blue'),
hoverinfo='none'
))
fig1.add_annotation(
x=-x, # Reflect the x coordinate
y=y,
text=colored_node,
showarrow=False,
xshift=15,
align="center",
font=dict(size=12),
bordercolor='black',
borderwidth=1,
borderpad=2,
bgcolor='white',
width=300,
height=120
)
# Add edges and text above each edge
for i, edge in enumerate(edges):
x0, y0 = positions[edge[0]]
x1, y1 = positions[edge[1]]
fig1.add_trace(go.Scatter(
x=[-x0, -x1], # Reflect the x coordinates
y=[y0, y1],
mode='lines',
line=dict(color='black', width=1)
))
# Calculate the midpoint of the edge
mid_x = (-x0 + -x1) / 2
mid_y = (y0 + y1) / 2
# Adjust y position to shift text upwards
text_y_position = mid_y + 0.8 # Increase this value to shift the text further upwards
# Add text annotation above the edge
fig1.add_annotation(
x=mid_x,
y=text_y_position,
text=edge_texts[i], # Use the text specific to this edge
showarrow=False,
font=dict(size=12),
align="center"
)
fig1.update_layout(
showlegend=False,
margin=dict(t=20, b=20, l=20, r=20),
xaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
yaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
width=1435, # Adjusted width to accommodate more levels
height=1000 # Adjusted height to accommodate more levels
)
return fig1
def generate_subplot2(scheme_sentences, sampled_sentence, highlight_info, common_grams):
# Combine nodes into one list with appropriate labels
nodes = scheme_sentences + sampled_sentence
para_len = len(scheme_sentences)
# Reassign levels: L1 -> L0, L2 -> L1
for i in range(para_len):
nodes[i] += ' L0' # Scheme sentences are now level 0
for i in range(para_len, len(nodes)):
nodes[i] += ' L1' # Sampled sentences are now level 1
# Function to apply LCS numbering based on common_grams
def apply_lcs_numbering(sentence, common_grams):
for idx, lcs in common_grams:
# Only replace if the LCS is a whole word (not part of another word)
sentence = re.sub(rf"\b{lcs}\b", f"({idx}){lcs}", sentence)
return sentence
# Apply LCS numbering
nodes = [apply_lcs_numbering(node, common_grams) for node in nodes]
# Define the highlight_words function
def highlight_words(sentence, color_map):
for word, color in color_map.items():
sentence = re.sub(f"\\b{word}\\b", f"{{{{{word}}}}}", sentence, flags=re.IGNORECASE)
return sentence
# Clean and wrap nodes, and highlight specified words globally
cleaned_nodes = [re.sub(r'\sL[0-9]$', '', node) for node in nodes]
global_color_map = dict(highlight_info)
highlighted_nodes = [highlight_words(node, global_color_map) for node in cleaned_nodes]
wrapped_nodes = ['
'.join(textwrap.wrap(node, width=80)) for node in highlighted_nodes]
# Function to determine tree levels and create edges dynamically
def get_levels_and_edges(nodes):
levels = {}
edges = []
for i, node in enumerate(nodes):
level = int(node.split()[-1][1])
levels[i] = level
# Add edges from L0 to all L1 nodes
l0_indices = [i for i, level in levels.items() if level == 0]
l1_indices = [i for i, level in levels.items() if level == 1]
# Ensure there are exactly 3 L0 nodes
if len(l0_indices) < 3:
raise ValueError("There should be exactly 3 L0 nodes to attach edges correctly.")
# Split L1 nodes into 3 groups of 4 for attaching to L0 nodes
for i, l1_node in enumerate(l1_indices):
if i < 4:
edges.append((l0_indices[0], l1_node)) # Connect to the first L0 node
elif i < 8:
edges.append((l0_indices[1], l1_node)) # Connect to the second L0 node
else:
edges.append((l0_indices[2], l1_node)) # Connect to the third L0 node
return levels, edges
# Get levels and dynamic edges
levels, edges = get_levels_and_edges(nodes)
max_level = max(levels.values(), default=0)
# Calculate positions
positions = {}
level_heights = defaultdict(int)
for node, level in levels.items():
level_heights[level] += 1
y_offsets = {level: - (height - 1) / 2 for level, height in level_heights.items()}
x_gap = 2
l1_y_gap = 10
for node, level in levels.items():
if level == 1:
positions[node] = (-level * x_gap, y_offsets[level] * l1_y_gap)
else:
positions[node] = (-level * x_gap, y_offsets[level] * l1_y_gap)
y_offsets[level] += 1
# Function to highlight words in a wrapped node string
def color_highlighted_words(node, color_map):
parts = re.split(r'(\{\{.*?\}\})', node)
colored_parts = []
for part in parts:
match = re.match(r'\{\{(.*?)\}\}', part)
if match:
word = match.group(1)
color = color_map.get(word, 'black')
colored_parts.append(f"{word}")
else:
colored_parts.append(part)
return ''.join(colored_parts)
# Define the text for each edge
edge_texts = [
"Highest Entropy Masking",
"Pseudo-random Masking",
"Random Masking",
"Greedy Sampling",
"Temperature Sampling",
"Exponential Minimum Sampling",
"Inverse Transform Sampling",
"Greedy Sampling",
"Temperature Sampling",
"Exponential Minimum Sampling",
"Inverse Transform Sampling",
"Greedy Sampling",
"Temperature Sampling",
"Exponential Minimum Sampling",
"Inverse Transform Sampling"
]
# Create figure
fig2 = go.Figure()
# Add nodes to the figure
for i, node in enumerate(wrapped_nodes):
colored_node = color_highlighted_words(node, global_color_map)
x, y = positions[i]
fig2.add_trace(go.Scatter(
x=[-x], # Reflect the x coordinate
y=[y],
mode='markers',
marker=dict(size=10, color='blue'),
hoverinfo='none'
))
fig2.add_annotation(
x=-x, # Reflect the x coordinate
y=y,
text=colored_node,
showarrow=False,
xshift=15,
align="center",
font=dict(size=12),
bordercolor='black',
borderwidth=1,
borderpad=2,
bgcolor='white',
width=450,
height=65
)
# Add edges and text above each edge
for i, edge in enumerate(edges):
x0, y0 = positions[edge[0]]
x1, y1 = positions[edge[1]]
fig2.add_trace(go.Scatter(
x=[-x0, -x1], # Reflect the x coordinates
y=[y0, y1],
mode='lines',
line=dict(color='black', width=1)
))
# Calculate the midpoint of the edge
mid_x = (-x0 + -x1) / 2
mid_y = (y0 + y1) / 2
# Adjust y position to shift text upwards
text_y_position = mid_y + 0.8 # Increase this value to shift the text further upwards
# Add text annotation above the edge
# Use a fallback text if we exceed the length of edge_texts
text = edge_texts[i] if i < len(edge_texts) else f"Edge {i+1}"
fig2.add_annotation(
x=mid_x,
y=text_y_position,
text=text, # Use the text specific to this edge
showarrow=False,
font=dict(size=12),
align="center"
)
fig2.update_layout(
showlegend=False,
margin=dict(t=20, b=20, l=20, r=20),
xaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
yaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
width=1435, # Adjusted width to accommodate more levels
height=1000 # Adjusted height to accommodate more levels
)
return fig2