Spaces:
Sleeping
Sleeping
import gradio as gr | |
import torch | |
from gradio.themes.utils import sizes | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
import utils | |
from constants import END_OF_TEXT, MIN_TEMPERATURE | |
# Load the tokenizer and model | |
tokenizer = AutoTokenizer.from_pretrained( | |
"BEE-spoke-data/smol_llama-101M-GQA-python", | |
use_fast=False, | |
) | |
tokenizer.pad_token_id = tokenizer.eos_token_id | |
tokenizer.pad_token = END_OF_TEXT | |
model = AutoModelForCausalLM.from_pretrained( | |
"BEE-spoke-data/smol_llama-101M-GQA-python", | |
device_map="auto", | |
) | |
model = torch.compile(model, mode="reduce-overhead") | |
# UI things | |
_styles = utils.get_file_as_string("styles.css") | |
# Loads ./README.md file & splits it into sections | |
readme_file_content = utils.get_file_as_string("README.md", path="./") | |
( | |
manifest, | |
description, | |
disclaimer, | |
base_model_info, | |
formats, | |
) = utils.get_sections(readme_file_content, "---", up_to=5) | |
theme = gr.themes.Soft( | |
primary_hue="yellow", | |
secondary_hue="orange", | |
neutral_hue="slate", | |
radius_size=sizes.radius_sm, | |
font=[ | |
gr.themes.GoogleFont("IBM Plex Sans", [400, 600]), | |
"ui-sans-serif", | |
"system-ui", | |
"sans-serif", | |
], | |
text_size=sizes.text_lg, | |
) | |
def run_inference( | |
prompt, temperature, max_new_tokens, top_p, repetition_penalty | |
) -> str: | |
inputs = tokenizer(prompt, return_tensors="pt").to(model.device) | |
outputs = model.generate( | |
**inputs, | |
do_sample=True, | |
epsilon_cutoff=1e-3, | |
max_new_tokens=max_new_tokens, | |
min_new_tokens=2, | |
no_repeat_ngram_size=6, | |
renormalize_logits=True, | |
repetition_penalty=repetition_penalty, | |
temperature=max(temperature, MIN_TEMPERATURE), | |
top_p=top_p, | |
) | |
text = tokenizer.batch_decode( | |
outputs, | |
skip_special_tokens=True, | |
)[0] | |
return text | |
examples = [ | |
[ | |
'def greet(name: str) -> None:\n """\n Greets the user\n """\n print(f"Hello,', | |
0.2, | |
64, | |
0.9, | |
1.2, | |
], | |
[ | |
'for i in range(5):\n """\n Loop through 0 to 4\n """\n print(i,', | |
0.2, | |
64, | |
0.9, | |
1.2, | |
], | |
['x = 10\n"""Check if x is greater than 5"""\nif x > 5:', 0.2, 64, 0.9, 1.2], | |
["def square(x: int) -> int:\n return", 0.2, 64, 0.9, 1.2], | |
['import math\n"""Math operations"""\nmath.', 0.2, 64, 0.9, 1.2], | |
[ | |
'def is_even(n) -> bool:\n """\n Check if a number is even\n """\n if n % 2 == 0:', | |
0.2, | |
64, | |
0.9, | |
1.2, | |
], | |
[ | |
'while True:\n """Infinite loop example"""\n print("Infinite loop,', | |
0.2, | |
64, | |
0.9, | |
1.2, | |
], | |
[ | |
"def sum_list(lst: list[int]) -> int:\n total = 0\n for item in lst:", | |
0.2, | |
64, | |
0.9, | |
1.2, | |
], | |
[ | |
'try:\n """\n Exception handling\n """\n x = int(input("Enter a number: "))\nexcept ValueError:', | |
0.2, | |
64, | |
0.9, | |
1.2, | |
], | |
[ | |
'def divide(a: float, b: float) -> float:\n """\n Divide a by b\n """\n if b != 0:', | |
0.2, | |
64, | |
0.9, | |
1.2, | |
], | |
] | |
# Define the Gradio Blocks interface | |
with gr.Blocks(theme=theme, analytics_enabled=False, css=_styles) as demo: | |
with gr.Column(): | |
gr.Markdown(description) | |
with gr.Row(): | |
with gr.Column(): | |
instruction = gr.Textbox( | |
value=examples[0][0], | |
placeholder="Enter your code here", | |
label="Code", | |
elem_id="q-input", | |
) | |
submit = gr.Button("Generate", variant="primary") | |
output = gr.Code(elem_id="q-output", language="python", lines=10) | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Accordion("Advanced settings", open=False): | |
with gr.Row(): | |
column_1, column_2 = gr.Column(), gr.Column() | |
with column_1: | |
temperature = gr.Slider( | |
label="Temperature", | |
value=0.2, | |
minimum=0.0, | |
maximum=1.0, | |
step=0.05, | |
interactive=True, | |
info="Higher values produce more diverse outputs", | |
) | |
max_new_tokens = gr.Slider( | |
label="Max new tokens", | |
value=64, | |
minimum=32, | |
maximum=512, | |
step=32, | |
interactive=True, | |
info="Number of tokens to generate", | |
) | |
with column_2: | |
top_p = gr.Slider( | |
label="Top-p (nucleus sampling)", | |
value=0.90, | |
minimum=0.0, | |
maximum=1, | |
step=0.05, | |
interactive=True, | |
info="Higher values sample more low-probability tokens", | |
) | |
repetition_penalty = gr.Slider( | |
label="Repetition penalty", | |
value=1.2, | |
minimum=1.0, | |
maximum=2.0, | |
step=0.05, | |
interactive=True, | |
info="Penalize repeated tokens", | |
) | |
with gr.Column(): | |
version = gr.Dropdown( | |
[ | |
"smol_llama-101M-GQA-python", | |
], | |
value="smol_llama-101M-GQA-python", | |
label="Version", | |
info="", | |
) | |
gr.Markdown(disclaimer) | |
gr.Examples( | |
examples=examples, | |
inputs=[ | |
instruction, | |
temperature, | |
max_new_tokens, | |
top_p, | |
repetition_penalty, | |
version, | |
], | |
cache_examples=False, | |
fn=run_inference, | |
outputs=[output], | |
) | |
gr.Markdown(base_model_info) | |
gr.Markdown(formats) | |
submit.click( | |
run_inference, | |
inputs=[ | |
instruction, | |
temperature, | |
max_new_tokens, | |
top_p, | |
repetition_penalty, | |
], | |
outputs=[output], | |
# preprocess=False, | |
# batch=False, | |
show_progress=True, | |
) | |
# .queue(max_size=10, api_open=False) | |
demo.launch( | |
debug=True, | |
show_api=False, | |
share=utils.is_google_colab(), | |
) | |