Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import PreTrainedTokenizerFast, BartForConditionalGeneration
|
3 |
+
|
4 |
+
model_name = 'ainize/kobart-news'
|
5 |
+
|
6 |
+
tokenizer = PreTrainedTokenizerFast.from_pretrained(model_name)
|
7 |
+
model = BartForConditionalGeneration.from_pretrained(model_name)
|
8 |
+
|
9 |
+
def summ(txt):
|
10 |
+
input_ids = tokenizer.encode(txt, return_tensors="pt")
|
11 |
+
summary_text_ids = model.generate(
|
12 |
+
input_ids=input_ids,
|
13 |
+
bos_token_id=model.config.bos_token_id,
|
14 |
+
eos_token_id=model.config.eos_token_id,
|
15 |
+
length_penalty=2.0,
|
16 |
+
max_length=142,
|
17 |
+
min_length=56,
|
18 |
+
num_beams=4,
|
19 |
+
)
|
20 |
+
return tokenizer.decode(summary_text_ids[0], skip_special_tokens=True)
|
21 |
+
|
22 |
+
interface = gr.Interface(summ, [gr.Textbox(label = 'original text')],
|
23 |
+
[gr.Textbokx(label = 'summary')])
|
24 |
+
|
25 |
+
interface.launch(share = True)
|