Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
update frontend to prepare for office plot
Browse files- app.py +80 -26
- classes_office.npy +3 -0
- requirements.txt +1 -0
app.py
CHANGED
@@ -9,19 +9,32 @@ from transformers import (
|
|
9 |
TextClassificationPipeline,
|
10 |
pipeline,
|
11 |
)
|
|
|
12 |
from langdetect import detect
|
13 |
from matplotlib import pyplot as plt
|
14 |
import imageio
|
15 |
|
16 |
# move constants into extra file
|
17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
UNKNOWN_LANG_TEXT = (
|
19 |
"The language is not recognized, it must be either in German or in French."
|
20 |
)
|
21 |
-
PLACEHOLDER_TEXT = "Geben Sie bitte den Titel und den
|
22 |
|
23 |
UNSURE_DE_TEXT = "Das ML-Modell ist nicht sicher. Das Departement könnte sein : \n\n"
|
24 |
UNSURE_FR_TEXT = "Le modèle ML n'est pas sûr. Le département pourrait être : \n\n"
|
|
|
|
|
|
|
25 |
BARS_DEP_FR = (
|
26 |
"DDPS",
|
27 |
"DFI",
|
@@ -60,10 +73,10 @@ def load_model(modelFolder):
|
|
60 |
return pipe
|
61 |
|
62 |
|
63 |
-
def translate_to_de(
|
64 |
"""Translates french user input to German for the model to reach better classification."""
|
65 |
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-fr-de")
|
66 |
-
translatedText = translator(
|
67 |
text = translatedText[0]["translation_text"]
|
68 |
return text
|
69 |
|
@@ -115,35 +128,76 @@ def show_chosen_category(barnames, rates, language):
|
|
115 |
|
116 |
|
117 |
pipeDep = load_model("saved_model_dep")
|
118 |
-
|
|
|
|
|
|
|
119 |
|
120 |
|
121 |
-
|
122 |
-
def attribution(inputText):
|
123 |
plt.clf()
|
124 |
-
language = detect(
|
125 |
|
126 |
# Translate the input to german if necessary
|
127 |
if language == "fr":
|
128 |
-
|
129 |
elif language != "de":
|
130 |
return UNKNOWN_LANG_TEXT, None
|
131 |
|
132 |
# Make the prediction with the 1000 first characters
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
TextClassificationPipeline,
|
10 |
pipeline,
|
11 |
)
|
12 |
+
from sklearn import preprocessing
|
13 |
from langdetect import detect
|
14 |
from matplotlib import pyplot as plt
|
15 |
import imageio
|
16 |
|
17 |
# move constants into extra file
|
18 |
+
DESCRIPTION = """Diese Anwendung klassifiziert Vorstöße in Departements und schlägt auch ein
|
19 |
+
mögliches Office vor. Bitte bewerten Sie für sich, ob Sie dem Office-Vorschlag
|
20 |
+
nachkommen wollen, oder Ihren Vorstoß in einem anderen Office sehen, und leiten Sie
|
21 |
+
nach eigenem Ermessen weiter. \n\n
|
22 |
+
Cette application classe les requêtes dans les départements et propose également un
|
23 |
+
office possible. Veuillez évaluer pour vous-même si vous souhaitez suivre la
|
24 |
+
proposition d'office ou si vous souhaitez voir votre démarche dans un autre office
|
25 |
+
et transmettez à votre discrétion."""
|
26 |
+
TITLE_DE = "Automatisierte Einteilung von Vorstößen in Departements & Offices"
|
27 |
+
TITLE_FR = "Où aller ? Classification des départements & bureaux"
|
28 |
UNKNOWN_LANG_TEXT = (
|
29 |
"The language is not recognized, it must be either in German or in French."
|
30 |
)
|
31 |
+
PLACEHOLDER_TEXT = "Geben Sie bitte den Titel und den 'Submitted Text' des Vorstoss ein.\nVeuillez entrer le titre et le 'Submitted Text' de la requête."
|
32 |
|
33 |
UNSURE_DE_TEXT = "Das ML-Modell ist nicht sicher. Das Departement könnte sein : \n\n"
|
34 |
UNSURE_FR_TEXT = "Le modèle ML n'est pas sûr. Le département pourrait être : \n\n"
|
35 |
+
|
36 |
+
ML_MODEL_SURE = 0.6
|
37 |
+
|
38 |
BARS_DEP_FR = (
|
39 |
"DDPS",
|
40 |
"DFI",
|
|
|
73 |
return pipe
|
74 |
|
75 |
|
76 |
+
def translate_to_de(SubmittedText):
|
77 |
"""Translates french user input to German for the model to reach better classification."""
|
78 |
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-fr-de")
|
79 |
+
translatedText = translator(SubmittedText[0:1000])
|
80 |
text = translatedText[0]["translation_text"]
|
81 |
return text
|
82 |
|
|
|
128 |
|
129 |
|
130 |
pipeDep = load_model("saved_model_dep")
|
131 |
+
pipeOffice = load_model("saved_model_dep")
|
132 |
+
|
133 |
+
labelencoderOffice = preprocessing.LabelEncoder()
|
134 |
+
labelencoderOffice.classes_ = np.load("classes_office.npy")
|
135 |
|
136 |
|
137 |
+
def textclassification(SubmittedText):
|
|
|
138 |
plt.clf()
|
139 |
+
language = detect(SubmittedText)
|
140 |
|
141 |
# Translate the input to german if necessary
|
142 |
if language == "fr":
|
143 |
+
SubmittedText = translate_to_de(SubmittedText)
|
144 |
elif language != "de":
|
145 |
return UNKNOWN_LANG_TEXT, None
|
146 |
|
147 |
# Make the prediction with the 1000 first characters
|
148 |
+
images = []
|
149 |
+
chosenCategoryTexts = []
|
150 |
+
for pipe in (pipeDep, pipeOffice):
|
151 |
+
prediction = pipe(SubmittedText[0:1000], return_all_scores=True)
|
152 |
+
rates = [row["score"] for row in prediction[0]]
|
153 |
+
|
154 |
+
# Create barplot & output text
|
155 |
+
im, barnames = create_bar_plot(rates, language)
|
156 |
+
images.append(im)
|
157 |
+
|
158 |
+
chosenCategoryText = show_chosen_category(barnames, rates, language)
|
159 |
+
chosenCategoryTexts.append(chosenCategoryText)
|
160 |
+
|
161 |
+
# return chosenCategoryText & image for both predictions
|
162 |
+
return chosenCategoryTexts[0], images[0], chosenCategoryTexts[1], images[1]
|
163 |
+
|
164 |
+
|
165 |
+
# TODO set example picture upon loading
|
166 |
+
# TODO vielleicht ein paar Sachen zum Einstellen im Frontend?
|
167 |
+
|
168 |
+
# Launch UI
|
169 |
+
with gr.Blocks(
|
170 |
+
# Set theme matching BK CH
|
171 |
+
gr.themes.Monochrome(
|
172 |
+
primary_hue="red",
|
173 |
+
secondary_hue="red",
|
174 |
+
font=[gr.themes.GoogleFont("Inter"), "Arial", "sans-serif"],
|
175 |
+
)
|
176 |
+
) as demo:
|
177 |
+
gr.Markdown(f"# {TITLE_DE}\n # {TITLE_FR}\n\n {DESCRIPTION}")
|
178 |
+
|
179 |
+
# Organize layout in three columns for input, prediction I and prediction II
|
180 |
+
with gr.Row():
|
181 |
+
with gr.Column(scale=2):
|
182 |
+
name = gr.Textbox(label="", lines=28, placeholder=PLACEHOLDER_TEXT)
|
183 |
+
predict_btn = gr.Button("Submit | Soumettre")
|
184 |
+
with gr.Column(scale=2):
|
185 |
+
output_text_dep = gr.Textbox(label="Departement prediction:")
|
186 |
+
output_image_dep = gr.Image(label="Departement")
|
187 |
+
with gr.Column(scale=2):
|
188 |
+
output_text_office = gr.Textbox(label="Office prediction:")
|
189 |
+
output_image_office = gr.Image(label="Office")
|
190 |
+
|
191 |
+
predict_btn.click(
|
192 |
+
fn=textclassification,
|
193 |
+
inputs=name,
|
194 |
+
outputs=[
|
195 |
+
output_text_dep,
|
196 |
+
output_image_dep,
|
197 |
+
output_text_office,
|
198 |
+
output_image_office,
|
199 |
+
],
|
200 |
+
api_name="predict",
|
201 |
+
)
|
202 |
+
|
203 |
+
demo.launch()
|
classes_office.npy
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:91aa3c28bb43aeb228af856650169f97f6326064b2dedb4cb438d5541918a94f
|
3 |
+
size 1480
|
requirements.txt
CHANGED
@@ -5,6 +5,7 @@ matplotlib
|
|
5 |
imageio
|
6 |
torch
|
7 |
sentencepiece
|
|
|
8 |
|
9 |
gradio
|
10 |
langdetect
|
|
|
5 |
imageio
|
6 |
torch
|
7 |
sentencepiece
|
8 |
+
sklearn
|
9 |
|
10 |
gradio
|
11 |
langdetect
|