Spaces:
Running
on
Zero
Running
on
Zero
import gc | |
import torch | |
def memory_optimization(): | |
# memory deallocation | |
gc.collect() | |
# removing cache | |
torch.cuda.empty_cache() | |
def freeze_model(model): | |
for param in model.parameters(): | |
param.requires_grad=False | |
def find_special_token(string, special_token): | |
start = 0 | |
while True: | |
start = string.find(special_token, start) | |
if start == -1: return | |
yield start | |
start += len(special_token) # use start += 1 to find overlapping matches | |
def insert_tor(sentence, tor_count): | |
words = sentence.split() | |
gap = len(words) // (tor_count-1) | |
# filtering | |
if 0<=gap<=2: | |
return False | |
count = 0 | |
result = "" | |
for i, word in enumerate(words): | |
if 0<i<len(words)-1: | |
result+=' ' | |
if i % gap == 0 and count != tor_count-1: | |
result += '<tor>' | |
count += 1 | |
result += word | |
result = result + "<tor>" | |
assert len(list(find_special_token(result, '<tor>'))) == tor_count | |
return result | |
def add_bundle_tokens(input_string, special_token, num): | |
# number of special tokens in input_string | |
num_special_tokens = len(list(find_special_token(input_string, special_token))) | |
# No special token -> return the raw | |
if not num_special_tokens: | |
return input_string | |
result = "" | |
index = 0 | |
while index < len(input_string): | |
if input_string[index:index + len(special_token)] == special_token: | |
result += special_token * num | |
index += len(special_token) | |
else: | |
result += input_string[index] | |
index += 1 | |
assert len(list(find_special_token(result, special_token))) == num_special_tokens * num | |
return result | |
def make_instruction_for_mmamba(question, tor=None): | |
if tor: | |
qa_prompt = make_human_string(f"<s>[UNUSED_TOKEN_146]user\n{question}[UNUSED_TOKEN_145]", | |
f"[UNUSED_TOKEN_146]rationale\n{tor}[UNUSED_TOKEN_145]\n</s>", | |
split='\n') | |
else: | |
qa_prompt = make_human_string(f"<s>[UNUSED_TOKEN_146]user\n{question}[UNUSED_TOKEN_145]", | |
f"[UNUSED_TOKEN_146]rationale\n"+"<tor>"*10+"[UNUSED_TOKEN_145]\n</s>", | |
split='\n') | |
return qa_prompt | |
def make_instruction_for_eval_meteor(question, dataset): | |
system_prompt = "You should give helpful answer to user based on the rationale." | |
if dataset != "mmmu" and dataset != "mathverse" and dataset != "hallusionbench" and dataset != "demo": | |
question = "<image>" + question | |
if dataset in ["sqa", "mmbench", "mmbench_cn", "mmbench_dev", "mmbench_cn_dev", "seed", "qbench", "ai2d", "mmstar"]: | |
question = question + "\nAnswer with the option's letter from the given choices directly." | |
elif dataset in ["vqav2", "gqa", "pope", "chartqa"]: | |
question = question + "\nAnswer the question using a single word or phrase." | |
elif dataset in ["vizwiz"]: | |
question = question + "\nWhen the provided information is insufficient, respond with 'Unanswerable'. Answer the question using a single word or phrase." | |
elif dataset in ["mmmu"]: | |
if "A." in question: | |
question = question + "\nAnswer with the option's letter from the given choices directly." | |
else: | |
question = question + "\nAnswer the question using a single word or phrase." | |
elif dataset in ["hallusionbench"]: | |
if "Please answer yes or no." not in question: | |
question = question + "Please answer yes or no." | |
qa_prompt = make_human_string("<s>"+"<tor>"*10+f"[UNUSED_TOKEN_146]system\n{system_prompt}[UNUSED_TOKEN_145]", | |
f"[UNUSED_TOKEN_146]user\n{question}[UNUSED_TOKEN_145]", | |
"[UNUSED_TOKEN_146]assistant\n", | |
split='\n') | |
return qa_prompt | |
def make_human_string(*args, split): | |
out = '' | |
for i, arg in enumerate(args): | |
out += arg | |
if i != len(args)-1: | |
out += split | |
return out | |
def get_max_new_tokens(data_name): | |
if data_name.lower() in ["mme", "pope", "sqa", "mmbench", "mmbench_cn", "mmbench_dev","mmbench_cn_dev", "seed", "qbench", "ai2d", "mmstar", "vqav2", "gqa", "chartqa", "hallusionbench", "textvqa", "mmmu"]: | |
return 5 | |
if data_name.lower() in ["llava", "mm-vet"]: | |
return 1024 | |
else: | |
return 128 | |
""" | |
Print Data Statistics | |
""" | |
def print_data_statistics(data): | |
# name set | |
name_set = {'caption', | |
'instruction', | |
'minigemini', | |
'docdownstream', | |
'docreason', | |
'gllava', | |
'mathvision', | |
'mathinstruct', | |
'mathplus'} | |
caption = [] | |
instruction = [] | |
minigemini = [] | |
docdownstream = [] | |
docreason = [] | |
gllava = [] | |
mathvision = [] | |
mathinstruct = [] | |
mathplus = [] | |
for d in data: | |
for name in name_set: | |
if name in d['id']: | |
eval(f'{name}.append(1)') | |
break | |
num_caption = sum(caption) | |
num_instruction = sum(instruction) | |
num_minigemini = sum(minigemini) | |
num_docdownstream = sum(docdownstream) | |
num_docreason = sum(docreason) | |
num_gllava = sum(gllava) | |
num_mathvision = sum(mathvision) | |
num_mathinstruct = sum(mathinstruct) | |
num_mathplus = sum(mathplus) | |
total_len = num_caption + num_instruction + num_minigemini + \ | |
num_docdownstream + num_docreason + num_gllava + \ | |
num_mathvision + num_mathinstruct + num_mathplus | |
print('Meteor Dataset Structure Statistics') | |
print(f'Total Length: {total_len}') | |
print('--------------------------------------------') | |
print(f'ShareGPT4V-Caption: {num_caption}') | |
print(f'ShareGPT4V-Instruction: {num_instruction}') | |
print(f'MiniGemini: {num_minigemini}') | |
print(f'DocDownstream: {num_docdownstream}') | |
print(f'DocReason: {num_docreason}') | |
print(f'GLLaVA: {num_gllava}') | |
print(f'MathVision: {num_mathvision}') | |
print(f'MathInstruct: {num_mathinstruct}') | |
print(f'MathPlus: {num_mathplus}') | |
print('--------------------------------------------') | |
print(f'Real-World Image: {num_caption + num_instruction}') | |
print(f'Document & Chart & Diagram & Sign & Symbol: {num_minigemini + num_docdownstream + num_docreason}') | |
print(f'Math: {num_gllava + num_mathvision + num_mathinstruct + num_mathplus}') | |
print(f' Math with Vision: {num_gllava + num_mathvision}') | |
print(f' Math with Text only: {num_mathinstruct + num_mathplus}') | |
print('--------------------------------------------') | |
print('') |