File size: 9,856 Bytes
dd4cd4b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 |
import gc
import math
import torch
from config import *
from PIL import Image
import torch.nn as nn
import torch.nn.functional as F
from torchvision.transforms.functional import to_pil_image
from torchvision.transforms.functional import pil_to_tensor
output_filtering = lambda x, model: x.split(model.prompt_rule["test_start"])[-1].split(model.prompt_rule["test_end"])[0].strip()
def memory_optimization():
# memory deallocation
gc.collect()
# removing cache
torch.cuda.empty_cache()
def freeze_model(model):
for param in model.parameters():
param.requires_grad=False
def find_special_token(string, special_token):
start = 0
while True:
start = string.find(special_token, start)
if start == -1: return
yield start
start += len(special_token) # use start += 1 to find overlapping matches
def add_bundle_tokens(input_string, special_token, num):
# number of special tokens in input_string
num_special_tokens = len(list(find_special_token(input_string, special_token)))
# No special token -> return the raw
if not num_special_tokens:
return input_string
result = ""
index = 0
while index < len(input_string):
if input_string[index:index + len(special_token)] == special_token:
result += special_token * num
index += len(special_token)
else:
result += input_string[index]
index += 1
assert len(list(find_special_token(result, special_token))) == num_special_tokens * num
return result
def make_instruction_and_label(question, answer, tokenizer, device, prompt_rule, config):
qa_prompt = make_human_string(prompt_rule["user_start"]+question+prompt_rule["user_end"],
prompt_rule["assistant_start"],
split=prompt_rule["split"])
# Only QA Prompt Length
length = tokenizer(qa_prompt, return_tensors='pt', add_special_tokens=False).input_ids[0].shape[0]
# Concat QA Prompt + Answer Length + stop token
qa_prompt = qa_prompt + answer + prompt_rule["assistant_end"]
# label
label = tokenizer(qa_prompt, return_tensors='pt', add_special_tokens=False).input_ids[0].to(device)
# phantom_position
phantom_position = torch.zeros_like(label)
phantom_position[0] = 1
# add ignore index to label
label[:length] = config.ignore_index
return qa_prompt, label, phantom_position
def make_instruction(question, dataset, prompt_rule):
if dataset != "mathverse" and dataset != "hallusionbench" and dataset == "demo":
question = "<image>" + question
if dataset in ["sqa", "mmbench", "mmbench_cn", "mmbench_dev", "mmbench_cn_dev", "seed", "seed-2-plus", "qbench", "ai2d", "mmstar", "cvbench", "blink"]:
question = question + "\nAnswer with the option's letter from the given choices directly."
elif dataset in ["pope", "chartqa"]:
question = question + "\nAnswer the question using a single word or phrase."
elif dataset in ["hallusionbench"]:
if "Please answer yes or no." not in question:
question = question + "\nPlease answer yes or no."
qa_prompt = make_human_string(prompt_rule["user_start"]+question+prompt_rule["user_end"],
prompt_rule["assistant_start"],
split=prompt_rule["split"])
return qa_prompt
def make_human_string(*args, split):
out = ''
for i, arg in enumerate(args):
out += arg
if i != len(args)-1:
out += split
return out
def get_max_new_tokens(data_name):
if data_name.lower() in ["mme", "pope", "sqa", "mmbench", "mmbench_cn", \
"mmbench_dev","mmbench_cn_dev", "seed", "seed-2-plus", \
"qbench", "ai2d", "mmstar", "chartqa", "hallusionbench", \
"cvbench", "blink"]:
return 5
elif data_name.lower() in ["llava", "llava_wilder", "mm-vet", "mm-vet-v2"]:
return 1024
elif data_name.lower() in ["mathvista", "mathverse", "visualwebbench"]:
return 512
else:
raise Exception("Check Data Name!")
class ScaledDotProductAttention(nn.Module):
def forward(self, query, key, value):
dk = query.size()[-1]
scores = query.matmul(key.transpose(-2, -1)) / math.sqrt(dk)
attention = F.softmax(scores, dim=-1)
return attention.matmul(value)
class XAttention(nn.Module):
def __init__(self,
in_features,
activation=F.gelu,
eta=1e-4):
"""XAttention attention.
:param in_features: Size of each input sample.
:param activation: The activation after each linear transformation.
"""
super(XAttention, self).__init__()
self.in_features = in_features
self.activation = activation
self.linear_q = nn.Linear(in_features, in_features, False)
self.linear_k = nn.Linear(in_features, in_features, False)
self.linear_v = nn.Linear(in_features, in_features, False)
self.linear_o = nn.Linear(in_features, in_features, False)
self.eta = eta
def forward(self, q, k, v, is_residual=False):
_q, _k, _v = self.linear_q(q), self.linear_k(k), self.linear_v(v)
if self.activation is not None:
_q = self.activation(_q)
_k = self.activation(_k)
_v = self.activation(_v)
y = ScaledDotProductAttention()(_q, _k, _v)
y = self.linear_o(y)
if self.activation is not None: y = self.activation(y)
return q + self.eta*y if is_residual else self.eta*y
def pixel_shuffle(x, scale_factor=0.5):
n, w, h, c = x.size()
# N, W, H, C --> N, W, H * scale, C // scale
x = x.view(n, w, int(h * scale_factor), int(c / scale_factor))
# N, W, H * scale, C // scale --> N, H * scale, W, C // scale
x = x.permute(0, 2, 1, 3).contiguous()
# N, H * scale, W, C // scale --> N, H * scale, W * scale, C // (scale ** 2)
x = x.view(n, int(h * scale_factor), int(w * scale_factor),
int(c / (scale_factor * scale_factor)))
x = x.permute(0, 2, 1, 3).contiguous()
return x
import torchvision.transforms as T
from torchvision.transforms.functional import InterpolationMode
IMAGENET_MEAN = (0.485, 0.456, 0.406)
IMAGENET_STD = (0.229, 0.224, 0.225)
def build_transform(input_size):
MEAN, STD = IMAGENET_MEAN, IMAGENET_STD
transform = T.Compose([
T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
T.ToTensor(),
T.Normalize(mean=MEAN, std=STD)
])
return transform
dynamic_transform = build_transform(input_size=448)
def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
best_ratio_diff = float('inf')
best_ratio = (1, 1)
area = width * height
for ratio in target_ratios:
target_aspect_ratio = ratio[0] / ratio[1]
ratio_diff = abs(aspect_ratio - target_aspect_ratio)
if ratio_diff < best_ratio_diff:
best_ratio_diff = ratio_diff
best_ratio = ratio
elif ratio_diff == best_ratio_diff:
if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
best_ratio = ratio
return best_ratio
def dynamic_preprocess(image, min_num=1, max_num=6, image_size=448, use_thumbnail=True):
image = to_pil_image(image)
orig_width, orig_height = image.size
aspect_ratio = orig_width / orig_height
# calculate the existing image aspect ratio
target_ratios = set(
(i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
i * j <= max_num and i * j >= min_num)
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
# find the closest aspect ratio to the target
target_aspect_ratio = find_closest_aspect_ratio(
aspect_ratio, target_ratios, orig_width, orig_height, image_size)
# calculate the target width and height
target_width = image_size * target_aspect_ratio[0]
target_height = image_size * target_aspect_ratio[1]
blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
# resize the image
resized_img = image.resize((target_width, target_height))
processed_images = []
for i in range(blocks):
box = (
(i % (target_width // image_size)) * image_size,
(i // (target_width // image_size)) * image_size,
((i % (target_width // image_size)) + 1) * image_size,
((i // (target_width // image_size)) + 1) * image_size
)
# split the image
split_img = resized_img.crop(box)
processed_images.append(split_img)
assert len(processed_images) == blocks
if use_thumbnail and len(processed_images) != 1:
thumbnail_img = image.resize((image_size, image_size))
processed_images.append(thumbnail_img)
return processed_images
def concat_images_horizontally_with_margin(image_tensors, margin=10):
images = [to_pil_image(xx) for xx in image_tensors]
max_height = max(image.height for image in images)
total_width = sum(image.width for image in images) + margin * (len(images) - 1)
# Create a new image with a black background
new_image = Image.new('RGB', (total_width, max_height), (0, 0, 0))
x_offset = 0
for image in images:
# Calculate padding to center the image vertically
y_offset = (max_height - image.height) // 2
new_image.paste(image, (x_offset, y_offset))
x_offset += image.width + margin # Add margin after each image except the last one
return pil_to_tensor(new_image) |