File size: 9,856 Bytes
dd4cd4b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
import gc
import math
import torch
from config import *
from PIL import Image
import torch.nn as nn
import torch.nn.functional as F
from torchvision.transforms.functional import to_pil_image
from torchvision.transforms.functional import pil_to_tensor

output_filtering = lambda x, model: x.split(model.prompt_rule["test_start"])[-1].split(model.prompt_rule["test_end"])[0].strip()
def memory_optimization():
    # memory deallocation
    gc.collect()

    # removing cache
    torch.cuda.empty_cache()

def freeze_model(model):
    for param in model.parameters():
        param.requires_grad=False

def find_special_token(string, special_token):
    start = 0
    while True:
        start = string.find(special_token, start)
        if start == -1: return
        yield start
        start += len(special_token) # use start += 1 to find overlapping matches

def add_bundle_tokens(input_string, special_token, num):

    # number of special tokens in input_string
    num_special_tokens = len(list(find_special_token(input_string, special_token)))

    # No special token -> return the raw
    if not num_special_tokens:
        return input_string
    
    result = ""
    index = 0
    while index < len(input_string):
        if input_string[index:index + len(special_token)] == special_token:
            result += special_token * num
            index += len(special_token)
        else:
            result += input_string[index]
            index += 1

    assert len(list(find_special_token(result, special_token))) == num_special_tokens * num
    return result

def make_instruction_and_label(question, answer, tokenizer, device, prompt_rule, config):

    qa_prompt = make_human_string(prompt_rule["user_start"]+question+prompt_rule["user_end"],
                                  prompt_rule["assistant_start"],
                                  split=prompt_rule["split"])
    
    # Only QA Prompt Length
    length = tokenizer(qa_prompt, return_tensors='pt', add_special_tokens=False).input_ids[0].shape[0]

    # Concat QA Prompt + Answer Length + stop token
    qa_prompt = qa_prompt + answer + prompt_rule["assistant_end"]

    # label
    label = tokenizer(qa_prompt, return_tensors='pt', add_special_tokens=False).input_ids[0].to(device)

    # phantom_position
    phantom_position = torch.zeros_like(label)
    phantom_position[0] = 1

    # add ignore index to label
    label[:length] = config.ignore_index

    return qa_prompt, label, phantom_position

def make_instruction(question, dataset, prompt_rule):
    
    if dataset != "mathverse" and dataset != "hallusionbench" and dataset == "demo":
        question = "<image>" + question

    if dataset in ["sqa", "mmbench", "mmbench_cn", "mmbench_dev", "mmbench_cn_dev", "seed", "seed-2-plus", "qbench", "ai2d", "mmstar", "cvbench", "blink"]:
        question = question + "\nAnswer with the option's letter from the given choices directly."

    elif dataset in ["pope", "chartqa"]:
        question = question + "\nAnswer the question using a single word or phrase."
        
    elif dataset in ["hallusionbench"]:
        if "Please answer yes or no." not in question:
            question = question + "\nPlease answer yes or no."
    
    qa_prompt = make_human_string(prompt_rule["user_start"]+question+prompt_rule["user_end"],
                                  prompt_rule["assistant_start"],
                                  split=prompt_rule["split"])

    return qa_prompt

def make_human_string(*args, split):
    out = ''
    for i, arg in enumerate(args):
        out += arg
        if i != len(args)-1:
            out += split
    return out

def get_max_new_tokens(data_name):
    if data_name.lower() in ["mme", "pope", "sqa", "mmbench", "mmbench_cn", \
                             "mmbench_dev","mmbench_cn_dev", "seed", "seed-2-plus", \
                             "qbench", "ai2d", "mmstar", "chartqa", "hallusionbench", \
                             "cvbench", "blink"]:
        return 5
    elif data_name.lower() in ["llava", "llava_wilder", "mm-vet", "mm-vet-v2"]:
        return 1024
    elif data_name.lower() in ["mathvista", "mathverse", "visualwebbench"]:
        return 512
    else:
        raise Exception("Check Data Name!")

class ScaledDotProductAttention(nn.Module):

    def forward(self, query, key, value):
        dk = query.size()[-1]
        scores = query.matmul(key.transpose(-2, -1)) / math.sqrt(dk)
        attention = F.softmax(scores, dim=-1)
        return attention.matmul(value)

class XAttention(nn.Module):

    def __init__(self,
                 in_features,
                 activation=F.gelu,
                 eta=1e-4):
        """XAttention attention.
        :param in_features: Size of each input sample.
        :param activation: The activation after each linear transformation.
        """
        super(XAttention, self).__init__()
        self.in_features = in_features
        self.activation = activation
        self.linear_q = nn.Linear(in_features, in_features, False)
        self.linear_k = nn.Linear(in_features, in_features, False)
        self.linear_v = nn.Linear(in_features, in_features, False)
        self.linear_o = nn.Linear(in_features, in_features, False)
        self.eta = eta

    def forward(self, q, k, v, is_residual=False):
        _q, _k, _v = self.linear_q(q), self.linear_k(k), self.linear_v(v)
        if self.activation is not None:
            _q = self.activation(_q)
            _k = self.activation(_k)
            _v = self.activation(_v)
        y = ScaledDotProductAttention()(_q, _k, _v)
        y = self.linear_o(y)
        if self.activation is not None: y = self.activation(y)
        return q + self.eta*y if is_residual else self.eta*y

def pixel_shuffle(x, scale_factor=0.5):
    n, w, h, c = x.size()
    # N, W, H, C --> N, W, H * scale, C // scale
    x = x.view(n, w, int(h * scale_factor), int(c / scale_factor))
    # N, W, H * scale, C // scale --> N, H * scale, W, C // scale
    x = x.permute(0, 2, 1, 3).contiguous()
    # N, H * scale, W, C // scale --> N, H * scale, W * scale, C // (scale ** 2)
    x = x.view(n, int(h * scale_factor), int(w * scale_factor),
                int(c / (scale_factor * scale_factor)))
    x = x.permute(0, 2, 1, 3).contiguous()
    return x

import torchvision.transforms as T
from torchvision.transforms.functional import InterpolationMode
IMAGENET_MEAN = (0.485, 0.456, 0.406)
IMAGENET_STD = (0.229, 0.224, 0.225)
def build_transform(input_size):
    MEAN, STD = IMAGENET_MEAN, IMAGENET_STD
    transform = T.Compose([
        T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
        T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
        T.ToTensor(),
        T.Normalize(mean=MEAN, std=STD)
    ])
    return transform
dynamic_transform = build_transform(input_size=448)

def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
    best_ratio_diff = float('inf')
    best_ratio = (1, 1)
    area = width * height
    for ratio in target_ratios:
        target_aspect_ratio = ratio[0] / ratio[1]
        ratio_diff = abs(aspect_ratio - target_aspect_ratio)
        if ratio_diff < best_ratio_diff:
            best_ratio_diff = ratio_diff
            best_ratio = ratio
        elif ratio_diff == best_ratio_diff:
            if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
                best_ratio = ratio
    return best_ratio

def dynamic_preprocess(image, min_num=1, max_num=6, image_size=448, use_thumbnail=True):
    image = to_pil_image(image)
    orig_width, orig_height = image.size
    aspect_ratio = orig_width / orig_height

    # calculate the existing image aspect ratio
    target_ratios = set(
        (i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
        i * j <= max_num and i * j >= min_num)
    target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])

    # find the closest aspect ratio to the target
    target_aspect_ratio = find_closest_aspect_ratio(
        aspect_ratio, target_ratios, orig_width, orig_height, image_size)

    # calculate the target width and height
    target_width = image_size * target_aspect_ratio[0]
    target_height = image_size * target_aspect_ratio[1]
    blocks = target_aspect_ratio[0] * target_aspect_ratio[1]

    # resize the image
    resized_img = image.resize((target_width, target_height))
    processed_images = []
    for i in range(blocks):
        box = (
            (i % (target_width // image_size)) * image_size,
            (i // (target_width // image_size)) * image_size,
            ((i % (target_width // image_size)) + 1) * image_size,
            ((i // (target_width // image_size)) + 1) * image_size
        )
        # split the image
        split_img = resized_img.crop(box)
        processed_images.append(split_img)
    assert len(processed_images) == blocks
    if use_thumbnail and len(processed_images) != 1:
        thumbnail_img = image.resize((image_size, image_size))
        processed_images.append(thumbnail_img)
    return processed_images

def concat_images_horizontally_with_margin(image_tensors, margin=10):
    images = [to_pil_image(xx) for xx in image_tensors]
    max_height = max(image.height for image in images)
    total_width = sum(image.width for image in images) + margin * (len(images) - 1)
    # Create a new image with a black background
    new_image = Image.new('RGB', (total_width, max_height), (0, 0, 0))
    
    x_offset = 0
    for image in images:
        # Calculate padding to center the image vertically
        y_offset = (max_height - image.height) // 2
        new_image.paste(image, (x_offset, y_offset))
        x_offset += image.width + margin  # Add margin after each image except the last one
    return pil_to_tensor(new_image)