Phantom / app.py
BK-Lee's picture
v1
91911bd
raw
history blame
5.36 kB
# A100 Zero GPU
import spaces
# flash attention
import subprocess
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
# Phantom Package
import torch
from PIL import Image
from utils.utils import *
from model.load_model import load_model
# Gradio Package
import time
import gradio as gr
from threading import Thread
from accelerate import Accelerator
from transformers import TextIteratorStreamer
from torchvision.transforms.functional import pil_to_tensor
# accel
accel = Accelerator()
# loading model
model_1_8, tokenizer_1_8 = load_model(size='1.8b')
# loading model
model_3_8, tokenizer_3_8 = load_model(size='3.8b')
# loading model
model_7, tokenizer_7 = load_model(size='7b')
def threading_function(inputs, streamer, device, model, tokenizer, temperature, new_max_token, top_p):
# propagation
_inputs = model.eval_process(inputs=inputs,
data='demo',
tokenizer=tokenizer,
device=device)
generation_kwargs = _inputs
generation_kwargs.update({'streamer': streamer})
generation_kwargs.update({'do_sample': True})
generation_kwargs.update({'max_new_tokens': new_max_token})
generation_kwargs.update({'top_p': top_p})
generation_kwargs.update({'temperature': temperature})
generation_kwargs.update({'use_cache': True})
return model.generate(**generation_kwargs)
@spaces.GPU
def bot_streaming(message, history, link, temperature, new_max_token, top_p):
# model selection
if "1.8B" in link:
model = model_1_8
tokenizer = tokenizer_1_8
elif "3.8B" in link:
model = model_3_8
tokenizer = tokenizer_3_8
elif "7B" in link:
model = model_7
tokenizer = tokenizer_7
# X -> bfloat16 conversion
for param in model.parameters():
if 'float32' in str(param.dtype).lower() or 'float16' in str(param.dtype).lower():
param.data = param.data.to(torch.bfloat16)
# cpu -> gpu
for param in model.parameters():
if not param.is_cuda:
param.data = param.to(accel.device)
try:
# prompt type -> input prompt
if len(message['files']) == 1:
# Image Load
image = pil_to_tensor(Image.open(message['files'][0]).convert("RGB"))
inputs = [{'image': image.to(accel.device), 'question': message['text']}]
elif len(message['files']) > 1:
raise Exception("No way!")
else:
inputs = [{'question': message['text']}]
# Text Generation
with torch.inference_mode():
# kwargs
streamer = TextIteratorStreamer(tokenizer, skip_special_tokens=True)
# Threading generation
thread = Thread(target=threading_function, kwargs=dict(inputs=inputs,
streamer=streamer,
model=model,
tokenizer=tokenizer,
device=accel.device,
temperature=temperature,
new_max_token=new_max_token,
top_p=top_p))
thread.start()
# generated text
generated_text = ""
for new_text in streamer:
generated_text += new_text
generated_text
# Text decoding
response = output_filtering(generated_text, model)
except:
response = "There may be unsupported format: ex) pdf, video, sound. Only supported is a single image in this version."
# private log print
text = message['text']
files = message['files']
print('-----------------------------')
print(f'Link: {link}')
print(f'Text: {text}')
print(f'MM Files: {files}')
print(f'Response: {response}')
print('-----------------------------\n')
buffer = ""
for character in response:
buffer += character
time.sleep(0.012)
yield buffer
demo = gr.ChatInterface(fn=bot_streaming,
additional_inputs = [gr.Radio(["1.8B", "3.8B", "7B"], label="Size", info="Select one model size", value="7B"), gr.Slider(0, 1, 0.9, label="temperature"), gr.Slider(1, 1024, 128, label="new_max_token"), gr.Slider(0, 1, 0.95, label="top_p")],
additional_inputs_accordion="Generation Hyperparameters",
theme=gr.themes.Soft(),
title="Phantom",
description="Phantom is super efficient 0.5B, 1.8B, 3.8B, and 7B size Large Language and Vision Models built on new propagation strategy. "
"Its inference speed highly depends on assinging non-scheduled GPU. (Therefore, once all GPUs are busy, then inference may be taken in infinity) "
"Note that, we don't support history-based conversation referring to previous dialogue",
stop_btn="Stop Generation", multimodal=True)
demo.launch()