File size: 8,441 Bytes
eacf0bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
import os
import gc
import torch

output_filtering = lambda x, model: x.split(model.prompt_rule["test_start"])[-1].split(model.prompt_rule["test_end"])[0].strip()

def memory_optimization():
    # memory deallocation
    gc.collect()

    # removing cache
    torch.cuda.empty_cache()

def str2bool(v):
    if v.lower() in ('yes', 'true', 't', 'y', '1'):
        return True
    elif v.lower() in ('no', 'false', 'f', 'n', '0'):
        return False
    else:
        assert False

def freeze_model(model):
    for param in model.parameters():
        param.requires_grad=False

def switching_model(model, updating_param):
    if updating_param == 'all':
        for name, param in model.named_parameters():
            param.requires_grad=True
        return

    for name, param in model.named_parameters():
        if 'float' in str(param.dtype):
            if sum([up_param in name for up_param in updating_param]):
                param.requires_grad=True
            else:
                param.requires_grad=False

def weight_upload(tensor_dict, model):
    used_name = []
    for name, param in tensor_dict.items():
        split_name = name.split('.')
        
        traversal = model
        for module_name in split_name:
            traversal = getattr(traversal, module_name)
        # logging
        # print(f'{name}: {(traversal==param.to(traversal.device)).sum()}/{(traversal!=param.to(traversal.device)).sum()}')
        setattr(traversal, 'data', param.to(traversal.device))
        used_name.append(name)

    for name in used_name:
        del tensor_dict[name]

def find_special_token(string, special_token):
    start = 0
    while True:
        start = string.find(special_token, start)
        if start == -1: return
        yield start
        start += len(special_token) # use start += 1 to find overlapping matches

def add_bundle_tokens(input_string, special_token, num):

    # number of special tokens in input_string
    num_special_tokens = len(list(find_special_token(input_string, special_token)))

    # No special token -> return the raw
    if not num_special_tokens:
        return input_string
    
    result = ""
    index = 0
    while index < len(input_string):
        if input_string[index:index + len(special_token)] == special_token:
            result += special_token * num
            index += len(special_token)
        else:
            result += input_string[index]
            index += 1

    assert len(list(find_special_token(result, special_token))) == num_special_tokens * num
    return result

def make_instruction(question, dataset, prompt_rule):
    system_prompt = make_human_string("You are AI model created by Byung-Kwan Lee, Ph.D. candidate, KAIST EE, of which AI model name is TroL (Traversal of Layers).",
                                      "You must give helpful, detailed, and polite answers to the user's questions",
                                      split=' ')
    
    if dataset != "mmmu" and dataset != "mathverse" and dataset != "hallusionbench" and dataset != "demo":
        question = "<image>" + question

    if dataset in ["sqa", "mmbench", "mmbench_cn", "mmbench_dev", "mmbench_cn_dev", "seed", "qbench", "ai2d", "mmstar"]:
        question = question + "\nAnswer with the option's letter from the given choices directly."

    elif dataset in ["vqav2", "gqa", "pope", "chartqa"]:
        question = question + "\nAnswer the question using a single word or phrase."

    elif dataset in ["vizwiz"]:
        question = question + "\nWhen the provided information is insufficient, respond with 'Unanswerable'. Answer the question using a single word or phrase."

    elif dataset in ["mmmu"]:
        if "A." in question:
            question = question + "\nAnswer with the option's letter from the given choices directly."
        else:
            question = question + "\nAnswer the question using a single word or phrase."
        
    elif dataset in ["hallusionbench"]:
        if "Please answer yes or no." not in question:
            question = question + "\nPlease answer yes or no."
    
    qa_prompt = make_human_string(prompt_rule["system_start"]+system_prompt+prompt_rule["system_end"],
                                  prompt_rule["user_start"]+question+prompt_rule["user_end"],
                                  prompt_rule["assistant_start"],
                                  split=prompt_rule["split"])

    return qa_prompt

def make_human_string(*args, split):
    out = ''
    for i, arg in enumerate(args):
        out += arg
        if i != len(args)-1:
            out += split
    return out

def get_max_new_tokens(data_name):
    if data_name.lower() in ["mme", "pope", "sqa", "mmbench", "mmbench_cn", "mmbench_dev","mmbench_cn_dev", "seed", "qbench", "ai2d", "mmstar", "vqav2", "gqa", "chartqa", "hallusionbench", "textvqa", "mmmu"]:
        return 5
    if data_name.lower() in ["llava", "mm-vet"]:
        return 1024
    else:
        return 512

def pixel_shuffle(x, scale_factor=0.5):
    n, w, h, c = x.size()
    # N, W, H, C --> N, W, H * scale, C // scale
    x = x.view(n, w, int(h * scale_factor), int(c / scale_factor))
    # N, W, H * scale, C // scale --> N, H * scale, W, C // scale
    x = x.permute(0, 2, 1, 3).contiguous()
    # N, H * scale, W, C // scale --> N, H * scale, W * scale, C // (scale ** 2)
    x = x.view(n, int(h * scale_factor), int(w * scale_factor),
                int(c / (scale_factor * scale_factor)))
    x = x.permute(0, 2, 1, 3).contiguous()
    return x

import torchvision.transforms as T
from torchvision.transforms.functional import InterpolationMode
IMAGENET_MEAN = (0.485, 0.456, 0.406)
IMAGENET_STD = (0.229, 0.224, 0.225)
def build_transform(input_size):
    MEAN, STD = IMAGENET_MEAN, IMAGENET_STD
    transform = T.Compose([
        T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
        T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
        T.ToTensor(),
        T.Normalize(mean=MEAN, std=STD)
    ])
    return transform
dynamic_transform = build_transform(input_size=448)

def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
    best_ratio_diff = float('inf')
    best_ratio = (1, 1)
    area = width * height
    for ratio in target_ratios:
        target_aspect_ratio = ratio[0] / ratio[1]
        ratio_diff = abs(aspect_ratio - target_aspect_ratio)
        if ratio_diff < best_ratio_diff:
            best_ratio_diff = ratio_diff
            best_ratio = ratio
        elif ratio_diff == best_ratio_diff:
            if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
                best_ratio = ratio
    return best_ratio

def dynamic_preprocess(image, min_num=1, max_num=6, image_size=448, use_thumbnail=True):
    from torchvision.transforms.functional import to_pil_image
    image = to_pil_image(image)
    orig_width, orig_height = image.size
    aspect_ratio = orig_width / orig_height

    # calculate the existing image aspect ratio
    target_ratios = set(
        (i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
        i * j <= max_num and i * j >= min_num)
    target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])

    # find the closest aspect ratio to the target
    target_aspect_ratio = find_closest_aspect_ratio(
        aspect_ratio, target_ratios, orig_width, orig_height, image_size)

    # calculate the target width and height
    target_width = image_size * target_aspect_ratio[0]
    target_height = image_size * target_aspect_ratio[1]
    blocks = target_aspect_ratio[0] * target_aspect_ratio[1]

    # resize the image
    resized_img = image.resize((target_width, target_height))
    processed_images = []
    for i in range(blocks):
        box = (
            (i % (target_width // image_size)) * image_size,
            (i // (target_width // image_size)) * image_size,
            ((i % (target_width // image_size)) + 1) * image_size,
            ((i // (target_width // image_size)) + 1) * image_size
        )
        # split the image
        split_img = resized_img.crop(box)
        processed_images.append(split_img)
    assert len(processed_images) == blocks
    if use_thumbnail and len(processed_images) != 1:
        thumbnail_img = image.resize((image_size, image_size))
        processed_images.append(thumbnail_img)
    return processed_images