File size: 5,413 Bytes
eacf0bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
# A100 Zero GPU
import spaces

# TroL Package
import torch
from PIL import Image
from utils.utils import *
import torch.nn.functional as F
from trol.load_trol import load_trol
from torchvision.transforms.functional import pil_to_tensor

# Gradio Package
import time
import gradio as gr
from threading import Thread
from accelerate import Accelerator
from transformers import TextIteratorStreamer
from torchvision.transforms.functional import pil_to_tensor

# flash attention
import subprocess
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)

# accel
accel = Accelerator()

# model selection
link = "TroL-7B" # [Select One] 'TroL-1.8B' | 'TroL-3.8B' | 'TroL-7B'

# User prompt
prompt_type="with_image" # Select one option "text_only", "with_image"
img_path='figures/demo.png'
question="What is the troll doing? Provide the detail in the image and imagine what the event happens."

# loading model
model, tokenizer = load_trol(link=link)

# cpu -> gpu
for param in model.parameters():
    if not param.is_cuda:
        param.data = param.to('cuda:0')

def threading_function(inputs, image_token_number, streamer, device, temperature, new_max_token, top_p):

    # propagation
    _inputs = model.eval_process(inputs=inputs,
                                 data='demo',
                                 tokenizer=tokenizer,
                                 device=device,
                                 img_token_number=image_token_number)
    generation_kwargs = _inputs
    generation_kwargs.update({'streamer': streamer})
    generation_kwargs.update({'do_sample': True})
    generation_kwargs.update({'max_new_tokens': new_max_token})
    generation_kwargs.update({'top_p': top_p})
    generation_kwargs.update({'temperature': temperature})
    generation_kwargs.update({'use_cache': True})
    return model.generate(**generation_kwargs)

@spaces.GPU
def bot_streaming(message, history, link, temperature, new_max_token, top_p):

    try:
        # prompt type -> input prompt
        image_token_number = None
        if len(message['files']) != 0:
            # Image Load
            image = pil_to_tensor(Image.open(Image.open(message['files'][0]).convert("RGB")).convert("RGB"))
            if not "3.8B" in link:
                image_token_number = 1225
                image = F.interpolate(image.unsqueeze(0), size=(490, 490), mode='bicubic').squeeze(0)
            inputs = [{'image': image, 'question': message['text']}]

        else:
            inputs = [{'question': message['text']}]

        # Text Generation
        with torch.inference_mode():
            # kwargs
            streamer = TextIteratorStreamer(tokenizer, skip_special_tokens=True)

            # Threading generation
            thread = Thread(target=threading_function, kwargs=dict(inputs=inputs,
                                                                image_token_number=image_token_number,
                                                                streamer=streamer,
                                                                device=accel.device,
                                                                temperature=temperature,
                                                                new_max_token=new_max_token,
                                                                top_p=top_p))
            thread.start()

            # generated text
            generated_text = ""
            for new_text in streamer:
                generated_text += new_text
            generated_text

        # Text decoding
        response = output_filtering(generated_text, model)
    
    except:
        response = "There may be unsupported format: ex) pdf, video, sound. Only supported is single image in this version."

    # private log print
    text = message['text']
    files = message['files']
    print(f'Text: {text}')
    print(f'MM Files: {files}')


    buffer = ""
    for character in response:
        buffer += character
        time.sleep(0.015)
        yield buffer

demo = gr.ChatInterface(fn=bot_streaming,
                        additional_inputs = [gr.Slider(0, 1, 0.9, label="temperature"), gr.Slider(1, 1024, 128, label="new_max_token"), gr.Slider(0, 1, 0.95, label="top_p")],
                        additional_inputs_accordion="Generation Hyperparameters",
                        theme=gr.themes.Soft(),
                        title="☄️Meteor",
                        description="Meteor is efficient 7B size Large Language and Vision Model built on the help of traversal of rationale.\n"
                                    "Its inference speed highly depends on assinging non-scheduled GPU. (Therefore, once all GPUs are busy, then inference may be taken in infinity)",
                        stop_btn="Stop Generation", multimodal=True)
demo.launch()







    




# Generate
with torch.inference_mode():
    _inputs = model.eval_process(inputs=inputs,
                                 data='demo',
                                 tokenizer=tokenizer,
                                 device='cuda:0',
                                 img_token_number=image_token_number)
    generate_ids = model.generate(**_inputs, max_new_tokens=256, use_cache=True)
    response = output_filtering(tokenizer.batch_decode(generate_ids, skip_special_tokens=False)[0], model)
print(response)