TroL / trol /load_trol.py
BK-Lee's picture
v1
eacf0bd
raw
history blame
2.46 kB
import torch
import warnings
from config import *
from peft import LoraConfig
from transformers import BitsAndBytesConfig
warnings.filterwarnings(action='ignore')
def load_trol(link):
"""
model selection
"""
if link == 'TroL-1.8B':
from .arch_internlm2.modeling_trol import TroLForCausalLM
from .arch_internlm2.tokenization_internlm2 import InternLM2Tokenizer as TroLTokenizer
bits = 4
path = TROL_1_8B
bit_quant_skip = ["vit", "vision_proj", "ffn", "output"]
elif link == 'TroL-3.8B':
from trol.arch_phi3.modeling_trol import TroLForCausalLM
from transformers import LlamaTokenizerFast as TroLTokenizer
bits = 8
path = TROL_3_8B
bit_quant_skip = ["vision_model", "mlp1", "lm_head"]
elif link == 'TroL-7B':
from .arch_internlm2.modeling_trol import TroLForCausalLM
from .arch_internlm2.tokenization_internlm2 import InternLM2Tokenizer as TroLTokenizer
bits = 4
path = TROL_7B
bit_quant_skip = ["vit", "vision_proj", "ffn", "output"]
else:
raise Exception("Unsupported Link")
# huggingface model configuration
huggingface_config = {}
# Bit quantization
if bits in [4, 8]:
huggingface_config.update(dict(
torch_dtype=torch.float16,
low_cpu_mem_usage=True,
attn_implementation="flash_attention_2",
quantization_config=BitsAndBytesConfig(
load_in_4bit=bits == 4,
load_in_8bit=bits == 8,
llm_int8_skip_modules=bit_quant_skip,
llm_int8_threshold=6.0,
llm_int8_has_fp16_weight=False,
bnb_4bit_compute_dtype=torch.float16,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type='nf4'
)
))
else:
huggingface_config.update(dict(
torch_dtype=torch.float16,
low_cpu_mem_usage=True,
attn_implementation="flash_attention_2",
))
# Loading tokenizer & Loading backbone model (error -> then delete flash attention)
tok_trol = TroLTokenizer.from_pretrained(path, padding_side='left')
try:
trol = TroLForCausalLM.from_pretrained(path, **huggingface_config)
except:
del huggingface_config["attn_implementation"]
trol = TroLForCausalLM.from_pretrained(path, **huggingface_config)
return trol, tok_trol