import gradio as gr from transformers import AutoModelForCausalLM, AutoTokenizer # Load the model and tokenizer model_name = "llava-hf/llava-v1.6-vicuna-13b-hf" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name) def generate_response(input_text): # Tokenize and generate inputs = tokenizer(input_text, return_tensors="pt") outputs = model.generate(**inputs, max_length=200) response = tokenizer.decode(outputs[0], skip_special_tokens=True) return response # Create a Gradio interface interface = gr.Interface( fn=generate_response, inputs="text", outputs="text", title="LLaVA-v1.6-vicuna-13b", description="This is a chatbot interface for the llava-hf/llava-v1.6-vicuna-13b-hf model." ) # Launch the interface interface.launch()