Spaces:
Sleeping
Sleeping
Lakoc
commited on
Commit
•
8c54c03
1
Parent(s):
2362603
Initial commit
Browse files- .idea/.gitignore +8 -0
- app.py +50 -34
- requirements.txt +1 -1
- whisper_notebook.ipynb +0 -192
.idea/.gitignore
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Default ignored files
|
2 |
+
/shelf/
|
3 |
+
/workspace.xml
|
4 |
+
# Editor-based HTTP Client requests
|
5 |
+
/httpRequests/
|
6 |
+
# Datasource local storage ignored files
|
7 |
+
/dataSources/
|
8 |
+
/dataSources.local.xml
|
app.py
CHANGED
@@ -8,29 +8,47 @@ from transformers.pipelines.audio_utils import ffmpeg_read
|
|
8 |
|
9 |
import tempfile
|
10 |
import os
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
-
MODEL_NAME = "openai/whisper-large-v3-turbo"
|
13 |
BATCH_SIZE = 8
|
14 |
FILE_LIMIT_MB = 1000
|
15 |
YT_LENGTH_LIMIT_S = 3600 # limit to 1 hour YouTube files
|
16 |
|
17 |
device = 0 if torch.cuda.is_available() else "cpu"
|
18 |
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
|
27 |
@spaces.GPU
|
28 |
-
def transcribe(inputs,
|
29 |
if inputs is None:
|
30 |
raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.")
|
31 |
|
32 |
-
|
33 |
-
|
|
|
|
|
|
|
34 |
|
35 |
|
36 |
def _return_yt_html_embed(yt_url):
|
@@ -41,41 +59,46 @@ def _return_yt_html_embed(yt_url):
|
|
41 |
)
|
42 |
return HTML_str
|
43 |
|
|
|
44 |
def download_yt_audio(yt_url, filename):
|
45 |
info_loader = youtube_dl.YoutubeDL()
|
46 |
-
|
47 |
try:
|
48 |
info = info_loader.extract_info(yt_url, download=False)
|
49 |
except youtube_dl.utils.DownloadError as err:
|
50 |
raise gr.Error(str(err))
|
51 |
-
|
52 |
file_length = info["duration_string"]
|
53 |
file_h_m_s = file_length.split(":")
|
54 |
file_h_m_s = [int(sub_length) for sub_length in file_h_m_s]
|
55 |
-
|
56 |
if len(file_h_m_s) == 1:
|
57 |
file_h_m_s.insert(0, 0)
|
58 |
if len(file_h_m_s) == 2:
|
59 |
file_h_m_s.insert(0, 0)
|
60 |
file_length_s = file_h_m_s[0] * 3600 + file_h_m_s[1] * 60 + file_h_m_s[2]
|
61 |
-
|
62 |
if file_length_s > YT_LENGTH_LIMIT_S:
|
63 |
yt_length_limit_hms = time.strftime("%HH:%MM:%SS", time.gmtime(YT_LENGTH_LIMIT_S))
|
64 |
file_length_hms = time.strftime("%HH:%MM:%SS", time.gmtime(file_length_s))
|
65 |
raise gr.Error(f"Maximum YouTube length is {yt_length_limit_hms}, got {file_length_hms} YouTube video.")
|
66 |
-
|
67 |
ydl_opts = {"outtmpl": filename, "format": "worstvideo[ext=mp4]+bestaudio[ext=m4a]/best[ext=mp4]/best"}
|
68 |
-
|
69 |
with youtube_dl.YoutubeDL(ydl_opts) as ydl:
|
70 |
try:
|
71 |
ydl.download([yt_url])
|
72 |
except youtube_dl.utils.ExtractorError as err:
|
73 |
raise gr.Error(str(err))
|
74 |
|
|
|
75 |
@spaces.GPU
|
76 |
-
def yt_transcribe(yt_url,
|
77 |
html_embed_str = _return_yt_html_embed(yt_url)
|
78 |
|
|
|
|
|
|
|
79 |
with tempfile.TemporaryDirectory() as tmpdirname:
|
80 |
filepath = os.path.join(tmpdirname, "video.mp4")
|
81 |
download_yt_audio(yt_url, filepath)
|
@@ -85,7 +108,7 @@ def yt_transcribe(yt_url, task, max_filesize=75.0):
|
|
85 |
inputs = ffmpeg_read(inputs, pipe.feature_extractor.sampling_rate)
|
86 |
inputs = {"array": inputs, "sampling_rate": pipe.feature_extractor.sampling_rate}
|
87 |
|
88 |
-
text = pipe(inputs, batch_size=BATCH_SIZE
|
89 |
|
90 |
return html_embed_str, text
|
91 |
|
@@ -96,14 +119,12 @@ mf_transcribe = gr.Interface(
|
|
96 |
fn=transcribe,
|
97 |
inputs=[
|
98 |
gr.Audio(sources="microphone", type="filepath"),
|
99 |
-
gr.
|
100 |
],
|
101 |
outputs="text",
|
102 |
-
title="
|
103 |
description=(
|
104 |
-
"Transcribe long-form microphone or audio inputs with the click of a button!
|
105 |
-
f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe audio files"
|
106 |
-
" of arbitrary length."
|
107 |
),
|
108 |
allow_flagging="never",
|
109 |
)
|
@@ -112,14 +133,12 @@ file_transcribe = gr.Interface(
|
|
112 |
fn=transcribe,
|
113 |
inputs=[
|
114 |
gr.Audio(sources="upload", type="filepath", label="Audio file"),
|
115 |
-
gr.
|
116 |
],
|
117 |
outputs="text",
|
118 |
-
title="
|
119 |
description=(
|
120 |
-
"Transcribe
|
121 |
-
f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe audio files"
|
122 |
-
" of arbitrary length."
|
123 |
),
|
124 |
allow_flagging="never",
|
125 |
)
|
@@ -128,14 +147,12 @@ yt_transcribe = gr.Interface(
|
|
128 |
fn=yt_transcribe,
|
129 |
inputs=[
|
130 |
gr.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL"),
|
131 |
-
gr.
|
132 |
],
|
133 |
outputs=["html", "text"],
|
134 |
-
title="
|
135 |
description=(
|
136 |
-
"Transcribe long-form YouTube videos with the click of a button!
|
137 |
-
f" [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe video files of"
|
138 |
-
" arbitrary length."
|
139 |
),
|
140 |
allow_flagging="never",
|
141 |
)
|
@@ -144,4 +161,3 @@ with demo:
|
|
144 |
gr.TabbedInterface([mf_transcribe, file_transcribe, yt_transcribe], ["Microphone", "Audio file", "YouTube"])
|
145 |
|
146 |
demo.queue().launch(ssr_mode=False)
|
147 |
-
|
|
|
8 |
|
9 |
import tempfile
|
10 |
import os
|
11 |
+
import time
|
12 |
+
|
13 |
+
# Available models to choose from
|
14 |
+
MODEL_OPTIONS = ["BUT-FIT/DeCRED-base", "BUT-FIT/DeCRED-small", "BUT-FIT/ED-base", "BUT-FIT/ED-small"]
|
15 |
+
DEFAULT_MODEL = MODEL_OPTIONS[0]
|
16 |
|
|
|
17 |
BATCH_SIZE = 8
|
18 |
FILE_LIMIT_MB = 1000
|
19 |
YT_LENGTH_LIMIT_S = 3600 # limit to 1 hour YouTube files
|
20 |
|
21 |
device = 0 if torch.cuda.is_available() else "cpu"
|
22 |
|
23 |
+
|
24 |
+
# Function to initialize pipeline based on model selection
|
25 |
+
def initialize_pipeline(model_name):
|
26 |
+
pipe = pipeline(
|
27 |
+
task="automatic-speech-recognition",
|
28 |
+
model=model_name,
|
29 |
+
feature_extractor=model_name,
|
30 |
+
chunk_length_s=30,
|
31 |
+
device=device,
|
32 |
+
trust_remote_code=True
|
33 |
+
)
|
34 |
+
pipe.type = "seq2seq"
|
35 |
+
return pipe
|
36 |
+
|
37 |
+
# Initialize the pipeline with a default model (it will be updated after user selects one)
|
38 |
+
pipe = initialize_pipeline(DEFAULT_MODEL)
|
39 |
+
pipe.type = "seq2seq"
|
40 |
|
41 |
|
42 |
@spaces.GPU
|
43 |
+
def transcribe(inputs, selected_model):
|
44 |
if inputs is None:
|
45 |
raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.")
|
46 |
|
47 |
+
# Update the pipeline with the selected model
|
48 |
+
pipe = initialize_pipeline(selected_model)
|
49 |
+
|
50 |
+
text = pipe(inputs, batch_size=BATCH_SIZE)["text"]
|
51 |
+
return text
|
52 |
|
53 |
|
54 |
def _return_yt_html_embed(yt_url):
|
|
|
59 |
)
|
60 |
return HTML_str
|
61 |
|
62 |
+
|
63 |
def download_yt_audio(yt_url, filename):
|
64 |
info_loader = youtube_dl.YoutubeDL()
|
65 |
+
|
66 |
try:
|
67 |
info = info_loader.extract_info(yt_url, download=False)
|
68 |
except youtube_dl.utils.DownloadError as err:
|
69 |
raise gr.Error(str(err))
|
70 |
+
|
71 |
file_length = info["duration_string"]
|
72 |
file_h_m_s = file_length.split(":")
|
73 |
file_h_m_s = [int(sub_length) for sub_length in file_h_m_s]
|
74 |
+
|
75 |
if len(file_h_m_s) == 1:
|
76 |
file_h_m_s.insert(0, 0)
|
77 |
if len(file_h_m_s) == 2:
|
78 |
file_h_m_s.insert(0, 0)
|
79 |
file_length_s = file_h_m_s[0] * 3600 + file_h_m_s[1] * 60 + file_h_m_s[2]
|
80 |
+
|
81 |
if file_length_s > YT_LENGTH_LIMIT_S:
|
82 |
yt_length_limit_hms = time.strftime("%HH:%MM:%SS", time.gmtime(YT_LENGTH_LIMIT_S))
|
83 |
file_length_hms = time.strftime("%HH:%MM:%SS", time.gmtime(file_length_s))
|
84 |
raise gr.Error(f"Maximum YouTube length is {yt_length_limit_hms}, got {file_length_hms} YouTube video.")
|
85 |
+
|
86 |
ydl_opts = {"outtmpl": filename, "format": "worstvideo[ext=mp4]+bestaudio[ext=m4a]/best[ext=mp4]/best"}
|
87 |
+
|
88 |
with youtube_dl.YoutubeDL(ydl_opts) as ydl:
|
89 |
try:
|
90 |
ydl.download([yt_url])
|
91 |
except youtube_dl.utils.ExtractorError as err:
|
92 |
raise gr.Error(str(err))
|
93 |
|
94 |
+
|
95 |
@spaces.GPU
|
96 |
+
def yt_transcribe(yt_url, selected_model, max_filesize=75.0):
|
97 |
html_embed_str = _return_yt_html_embed(yt_url)
|
98 |
|
99 |
+
# Update the pipeline with the selected model
|
100 |
+
pipe = initialize_pipeline(selected_model)
|
101 |
+
|
102 |
with tempfile.TemporaryDirectory() as tmpdirname:
|
103 |
filepath = os.path.join(tmpdirname, "video.mp4")
|
104 |
download_yt_audio(yt_url, filepath)
|
|
|
108 |
inputs = ffmpeg_read(inputs, pipe.feature_extractor.sampling_rate)
|
109 |
inputs = {"array": inputs, "sampling_rate": pipe.feature_extractor.sampling_rate}
|
110 |
|
111 |
+
text = pipe(inputs, batch_size=BATCH_SIZE)["text"]
|
112 |
|
113 |
return html_embed_str, text
|
114 |
|
|
|
119 |
fn=transcribe,
|
120 |
inputs=[
|
121 |
gr.Audio(sources="microphone", type="filepath"),
|
122 |
+
gr.Dropdown(choices=MODEL_OPTIONS, label="Model", value=DEFAULT_MODEL)
|
123 |
],
|
124 |
outputs="text",
|
125 |
+
title="Transcribe Audio",
|
126 |
description=(
|
127 |
+
"Transcribe long-form microphone or audio inputs with the click of a button! Select a model from the dropdown."
|
|
|
|
|
128 |
),
|
129 |
allow_flagging="never",
|
130 |
)
|
|
|
133 |
fn=transcribe,
|
134 |
inputs=[
|
135 |
gr.Audio(sources="upload", type="filepath", label="Audio file"),
|
136 |
+
gr.Dropdown(choices=MODEL_OPTIONS, label="Model", value=DEFAULT_MODEL)
|
137 |
],
|
138 |
outputs="text",
|
139 |
+
title="Transcribe Audio",
|
140 |
description=(
|
141 |
+
"Transcribe audio files with the click of a button! Select a model from the dropdown."
|
|
|
|
|
142 |
),
|
143 |
allow_flagging="never",
|
144 |
)
|
|
|
147 |
fn=yt_transcribe,
|
148 |
inputs=[
|
149 |
gr.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL"),
|
150 |
+
gr.Dropdown(choices=MODEL_OPTIONS, label="Model", value=DEFAULT_MODEL)
|
151 |
],
|
152 |
outputs=["html", "text"],
|
153 |
+
title="Transcribe YouTube",
|
154 |
description=(
|
155 |
+
"Transcribe long-form YouTube videos with the click of a button! Select a model from the dropdown."
|
|
|
|
|
156 |
),
|
157 |
allow_flagging="never",
|
158 |
)
|
|
|
161 |
gr.TabbedInterface([mf_transcribe, file_transcribe, yt_transcribe], ["Microphone", "Audio file", "YouTube"])
|
162 |
|
163 |
demo.queue().launch(ssr_mode=False)
|
|
requirements.txt
CHANGED
@@ -1,2 +1,2 @@
|
|
1 |
-
transformers
|
2 |
yt-dlp
|
|
|
1 |
+
transformers==4.39.3
|
2 |
yt-dlp
|
whisper_notebook.ipynb
DELETED
@@ -1,192 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"nbformat": 4,
|
3 |
-
"nbformat_minor": 0,
|
4 |
-
"metadata": {
|
5 |
-
"colab": {
|
6 |
-
"provenance": [],
|
7 |
-
"gpuType": "T4"
|
8 |
-
},
|
9 |
-
"kernelspec": {
|
10 |
-
"name": "python3",
|
11 |
-
"display_name": "Python 3"
|
12 |
-
},
|
13 |
-
"language_info": {
|
14 |
-
"name": "python"
|
15 |
-
},
|
16 |
-
"accelerator": "GPU"
|
17 |
-
},
|
18 |
-
"cells": [
|
19 |
-
{
|
20 |
-
"cell_type": "markdown",
|
21 |
-
"source": [
|
22 |
-
"# Whisper v3 is here!\n",
|
23 |
-
"\n",
|
24 |
-
"Whisper v3 is a new model open sourced by OpenAI. The model can do multilingual transcriptions and is quite impressive. For example, you can change from English to Spanish or Chinese in the middle of a sentence and it will work well!\n",
|
25 |
-
"\n",
|
26 |
-
"The model can be run in a free Google Colab instance and is integrated into `transformers` already, so switching can be a very smooth process if you already use the previous versions."
|
27 |
-
],
|
28 |
-
"metadata": {
|
29 |
-
"id": "OXaUqiE-eyXM"
|
30 |
-
}
|
31 |
-
},
|
32 |
-
{
|
33 |
-
"cell_type": "code",
|
34 |
-
"execution_count": null,
|
35 |
-
"metadata": {
|
36 |
-
"id": "WFQeUT9EcIcK"
|
37 |
-
},
|
38 |
-
"outputs": [],
|
39 |
-
"source": [
|
40 |
-
"%%capture\n",
|
41 |
-
"!pip install git+https://github.com/huggingface/transformers gradio"
|
42 |
-
]
|
43 |
-
},
|
44 |
-
{
|
45 |
-
"cell_type": "markdown",
|
46 |
-
"source": [
|
47 |
-
"Let's use the high level `pipeline` from the `transformers` library to load the model."
|
48 |
-
],
|
49 |
-
"metadata": {
|
50 |
-
"id": "sZONes21fHTA"
|
51 |
-
}
|
52 |
-
},
|
53 |
-
{
|
54 |
-
"cell_type": "code",
|
55 |
-
"source": [
|
56 |
-
"import torch\n",
|
57 |
-
"from transformers import pipeline\n",
|
58 |
-
"\n",
|
59 |
-
"pipe = pipeline(\"automatic-speech-recognition\",\n",
|
60 |
-
" \"openai/whisper-large-v3\",\n",
|
61 |
-
" torch_dtype=torch.float16,\n",
|
62 |
-
" device=\"cuda:0\")"
|
63 |
-
],
|
64 |
-
"metadata": {
|
65 |
-
"colab": {
|
66 |
-
"base_uri": "https://localhost:8080/"
|
67 |
-
},
|
68 |
-
"id": "DvBdwMdPcr-Y",
|
69 |
-
"outputId": "47f32218-fd85-49ea-d880-d31577bcf9b8"
|
70 |
-
},
|
71 |
-
"execution_count": null,
|
72 |
-
"outputs": [
|
73 |
-
{
|
74 |
-
"output_type": "stream",
|
75 |
-
"name": "stderr",
|
76 |
-
"text": [
|
77 |
-
"Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.\n",
|
78 |
-
"Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.\n"
|
79 |
-
]
|
80 |
-
}
|
81 |
-
]
|
82 |
-
},
|
83 |
-
{
|
84 |
-
"cell_type": "code",
|
85 |
-
"source": [
|
86 |
-
"pipe(\"https://cdn-media.huggingface.co/speech_samples/sample1.flac\")"
|
87 |
-
],
|
88 |
-
"metadata": {
|
89 |
-
"colab": {
|
90 |
-
"base_uri": "https://localhost:8080/"
|
91 |
-
},
|
92 |
-
"id": "GZFkIyhjc0Nc",
|
93 |
-
"outputId": "f1463431-3e08-4438-815f-b71e5e7a1503"
|
94 |
-
},
|
95 |
-
"execution_count": null,
|
96 |
-
"outputs": [
|
97 |
-
{
|
98 |
-
"output_type": "execute_result",
|
99 |
-
"data": {
|
100 |
-
"text/plain": [
|
101 |
-
"{'text': \" going along slushy country roads and speaking to damp audiences in draughty schoolrooms day after day for a fortnight he'll have to put in an appearance at some place of worship on sunday morning and he can come to us immediately afterwards\"}"
|
102 |
-
]
|
103 |
-
},
|
104 |
-
"metadata": {},
|
105 |
-
"execution_count": 2
|
106 |
-
}
|
107 |
-
]
|
108 |
-
},
|
109 |
-
{
|
110 |
-
"cell_type": "markdown",
|
111 |
-
"source": [
|
112 |
-
"Let's now build a quick Gradio demo where we can play with the model directly using our microphone! You can run this code in a Google Colab instance (or locally!) or just head to the <a href=\"https://huggingface.co/spaces/hf-audio/whisper-large-v3\" target=\"_blank\">Space</a> to play directly with it online."
|
113 |
-
],
|
114 |
-
"metadata": {
|
115 |
-
"id": "pt3YtM_PfTQY"
|
116 |
-
}
|
117 |
-
},
|
118 |
-
{
|
119 |
-
"cell_type": "code",
|
120 |
-
"source": [
|
121 |
-
"import gradio as gr\n",
|
122 |
-
"\n",
|
123 |
-
"def transcribe(inputs):\n",
|
124 |
-
" if inputs is None:\n",
|
125 |
-
" raise gr.Error(\"No audio file submitted! Please record an audio before submitting your request.\")\n",
|
126 |
-
"\n",
|
127 |
-
" text = pipe(inputs, generate_kwargs={\"task\": \"transcribe\"}, return_timestamps=True)[\"text\"]\n",
|
128 |
-
" return text\n",
|
129 |
-
"\n",
|
130 |
-
"demo = gr.Interface(\n",
|
131 |
-
" fn=transcribe,\n",
|
132 |
-
" inputs=[\n",
|
133 |
-
" gr.Audio(sources=[\"microphone\", \"upload\"], type=\"filepath\"),\n",
|
134 |
-
" ],\n",
|
135 |
-
" outputs=\"text\",\n",
|
136 |
-
" title=\"Whisper Large V3: Transcribe Audio\",\n",
|
137 |
-
" description=(\n",
|
138 |
-
" \"Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the\"\n",
|
139 |
-
" \" checkpoint [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) and 🤗 Transformers to transcribe audio files\"\n",
|
140 |
-
" \" of arbitrary length.\"\n",
|
141 |
-
" ),\n",
|
142 |
-
" allow_flagging=\"never\",\n",
|
143 |
-
")\n",
|
144 |
-
"\n",
|
145 |
-
"demo.launch()\n"
|
146 |
-
],
|
147 |
-
"metadata": {
|
148 |
-
"colab": {
|
149 |
-
"base_uri": "https://localhost:8080/",
|
150 |
-
"height": 648
|
151 |
-
},
|
152 |
-
"id": "K0b2UZLVdIze",
|
153 |
-
"outputId": "bcff00e0-4fc8-4883-9ba4-480f5a6665f0"
|
154 |
-
},
|
155 |
-
"execution_count": null,
|
156 |
-
"outputs": [
|
157 |
-
{
|
158 |
-
"output_type": "stream",
|
159 |
-
"name": "stdout",
|
160 |
-
"text": [
|
161 |
-
"Setting queue=True in a Colab notebook requires sharing enabled. Setting `share=True` (you can turn this off by setting `share=False` in `launch()` explicitly).\n",
|
162 |
-
"\n",
|
163 |
-
"Colab notebook detected. To show errors in colab notebook, set debug=True in launch()\n",
|
164 |
-
"Running on public URL: https://037dbdb04542aa1a29.gradio.live\n",
|
165 |
-
"\n",
|
166 |
-
"This share link expires in 72 hours. For free permanent hosting and GPU upgrades, run `gradio deploy` from Terminal to deploy to Spaces (https://huggingface.co/spaces)\n"
|
167 |
-
]
|
168 |
-
},
|
169 |
-
{
|
170 |
-
"output_type": "display_data",
|
171 |
-
"data": {
|
172 |
-
"text/plain": [
|
173 |
-
"<IPython.core.display.HTML object>"
|
174 |
-
],
|
175 |
-
"text/html": [
|
176 |
-
"<div><iframe src=\"https://037dbdb04542aa1a29.gradio.live\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
|
177 |
-
]
|
178 |
-
},
|
179 |
-
"metadata": {}
|
180 |
-
},
|
181 |
-
{
|
182 |
-
"output_type": "execute_result",
|
183 |
-
"data": {
|
184 |
-
"text/plain": []
|
185 |
-
},
|
186 |
-
"metadata": {},
|
187 |
-
"execution_count": 4
|
188 |
-
}
|
189 |
-
]
|
190 |
-
}
|
191 |
-
]
|
192 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|