import spaces import torch import gradio as gr import yt_dlp as youtube_dl from transformers import pipeline from transformers.pipelines.audio_utils import ffmpeg_read import tempfile import os import time # Available models to choose from MODEL_OPTIONS = ["BUT-FIT/DeCRED-base", "BUT-FIT/DeCRED-small", "BUT-FIT/ED-base", "BUT-FIT/ED-small"] DEFAULT_MODEL = MODEL_OPTIONS[1] BATCH_SIZE = 8 FILE_LIMIT_MB = 1000 YT_LENGTH_LIMIT_S = 3600 # limit to 1 hour YouTube files device = 0 if torch.cuda.is_available() else "cpu" # Function to initialize pipeline based on model selection def initialize_pipeline(model_name): pipe = pipeline( task="automatic-speech-recognition", model=model_name, feature_extractor=model_name, chunk_length_s=30, device=device, trust_remote_code=True ) pipe.type = "seq2seq" return pipe # Initialize the pipeline with a default model (it will be updated after user selects one) pipe = initialize_pipeline(DEFAULT_MODEL) pipe.type = "seq2seq" @spaces.GPU def transcribe(inputs, selected_model): if inputs is None: raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.") # Update the pipeline with the selected model pipe = initialize_pipeline(selected_model) text = pipe(inputs, batch_size=BATCH_SIZE)["text"] return text def _return_yt_html_embed(yt_url): video_id = yt_url.split("?v=")[-1] HTML_str = ( f'
' "
" ) return HTML_str def download_yt_audio(yt_url, filename): info_loader = youtube_dl.YoutubeDL() try: info = info_loader.extract_info(yt_url, download=False) except youtube_dl.utils.DownloadError as err: raise gr.Error(str(err)) file_length = info["duration_string"] file_h_m_s = file_length.split(":") file_h_m_s = [int(sub_length) for sub_length in file_h_m_s] if len(file_h_m_s) == 1: file_h_m_s.insert(0, 0) if len(file_h_m_s) == 2: file_h_m_s.insert(0, 0) file_length_s = file_h_m_s[0] * 3600 + file_h_m_s[1] * 60 + file_h_m_s[2] if file_length_s > YT_LENGTH_LIMIT_S: yt_length_limit_hms = time.strftime("%HH:%MM:%SS", time.gmtime(YT_LENGTH_LIMIT_S)) file_length_hms = time.strftime("%HH:%MM:%SS", time.gmtime(file_length_s)) raise gr.Error(f"Maximum YouTube length is {yt_length_limit_hms}, got {file_length_hms} YouTube video.") ydl_opts = {"outtmpl": filename, "format": "worstvideo[ext=mp4]+bestaudio[ext=m4a]/best[ext=mp4]/best"} with youtube_dl.YoutubeDL(ydl_opts) as ydl: try: ydl.download([yt_url]) except youtube_dl.utils.ExtractorError as err: raise gr.Error(str(err)) @spaces.GPU def yt_transcribe(yt_url, selected_model, max_filesize=75.0): html_embed_str = _return_yt_html_embed(yt_url) # Update the pipeline with the selected model pipe = initialize_pipeline(selected_model) with tempfile.TemporaryDirectory() as tmpdirname: filepath = os.path.join(tmpdirname, "video.mp4") download_yt_audio(yt_url, filepath) with open(filepath, "rb") as f: inputs = f.read() inputs = ffmpeg_read(inputs, pipe.feature_extractor.sampling_rate) inputs = {"array": inputs, "sampling_rate": pipe.feature_extractor.sampling_rate} text = pipe(inputs, batch_size=BATCH_SIZE)["text"] return html_embed_str, text demo = gr.Blocks(theme=gr.themes.Ocean()) mf_transcribe = gr.Interface( fn=transcribe, inputs=[ gr.Audio(sources="microphone", type="filepath"), gr.Dropdown(choices=MODEL_OPTIONS, label="Model", value=DEFAULT_MODEL) ], outputs="text", title="Transcribe Audio", description=( "Transcribe long-form microphone or audio inputs with the click of a button! Select a model from the dropdown." ), allow_flagging="never", ) file_transcribe = gr.Interface( fn=transcribe, inputs=[ gr.Audio(sources="upload", type="filepath", label="Audio file"), gr.Dropdown(choices=MODEL_OPTIONS, label="Model", value=DEFAULT_MODEL) ], outputs="text", title="Transcribe Audio", description=( "Transcribe audio files with the click of a button! Select a model from the dropdown." ), allow_flagging="never", ) yt_transcribe = gr.Interface( fn=yt_transcribe, inputs=[ gr.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL"), gr.Dropdown(choices=MODEL_OPTIONS, label="Model", value=DEFAULT_MODEL) ], outputs=["html", "text"], title="Transcribe YouTube", description=( """ ### *Currently only works on local instances of this space, as youtube-dl does not function from Hugging Face servers.* Transcribe long-form YouTube videos with the click of a button! Select a model from the dropdown.""" ), allow_flagging="never", ) with demo: gr.TabbedInterface([mf_transcribe, file_transcribe, yt_transcribe], ["Microphone", "Audio file", "YouTube"]) gr.Markdown( """ ## Overview This space demonstrates the performance of **DeCRED** (**De**coder-**C**entric **R**egularization in **E**ncoder-**D**ecoder) for automatic speech recognition (ASR). DeCRED enhances model robustness and generalization, particularly in out-of-domain scenarios, by introducing auxiliary classifiers in the decoder layers of encoder-decoder ASR architectures. ## Key Features - **Auxiliary Classifiers**: DeCRED integrates auxiliary classifiers in the decoder module to regularize training, improving the model’s ability to generalize across domains. - **Enhanced Decoding**: It proposes two new decoding strategies that leverage auxiliary classifiers to re-estimate token probabilities, resulting in more accurate ASR predictions. - **Strong Baseline**: Built on the **E-branchformer** architecture, DeCRED achieves competitive word error rates (WER) compared to Whisper-medium and OWSM v3 while requiring significantly less training data and a smaller model size. - **Out-of-Domain Performance**: DeCRED demonstrates strong generalization, reducing WERs by 2.7 and 2.9 points on the AMI and Gigaspeech datasets, respectively. ## Disclaimer This space currently runs on basic CPU hardware, so generation might take a bit longer (approximately four times the length of the audio). You can clone the repository and run it locally for better performance. Please refer to the [Hugging Face documentation](https://huggingface.co/docs/hub/spaces-overview#clone-the-repository) for instructions on how to clone the repository and run it locally. The model is not perfect and may make errors, so please use it responsibly. ## Explore the Models - [DeCRED Base](https://huggingface.co/BUT-FIT/DeCRED-base) - [DeCRED Small](https://huggingface.co/BUT-FIT/DeCRED-small) - [ED Base](https://huggingface.co/BUT-FIT/ED-base) - [ED Small](https://huggingface.co/BUT-FIT/ED-small) ## Citation If you use DeCRED in your research, please cite the following paper: ```bibtex @misc{polok2024improvingautomaticspeechrecognition, title={Improving Automatic Speech Recognition with Decoder-Centric Regularisation in Encoder-Decoder Models}, author={Alexander Polok and Santosh Kesiraju and Karel Beneš and Lukáš Burget and Jan Černocký}, year={2024}, eprint={2410.17437}, archivePrefix={arXiv}, primaryClass={eess.AS}, url={https://arxiv.org/abs/2410.17437}, } ``` """ ) demo.queue().launch(ssr_mode=False)