import gradio as gr from transformers import pipeline, AutoTokenizer import numpy as np from pydub import AudioSegment import librosa # Load the pipeline for speech recognition and translation pipe = pipeline( "automatic-speech-recognition", model="Akashpb13/Hausa_xlsr", tokenizer="Akashpb13/Hausa_xlsr" ) translator = pipeline("text2text-generation", model="Baghdad99/saad-hausa-text-to-english-text") tts = pipeline("text-to-speech", model="Baghdad99/english_voice_tts") def translate_speech(audio_input): print(f"Type of audio: {type(audio_data_tuple)}, Value of audio: {audio_data_tuple}") # Debug line # Check if the input is a tuple (recorded audio) or a string (uploaded file) if isinstance(audio_input, tuple): # Extract the audio data from the tuple sample_rate, audio_data = audio_input else: # Load the audio file as a floating point time series audio_data, sample_rate = librosa.load(audio_input, sr=None) # Normalize the audio data to the range [-1, 1] audio_data_normalized = audio_data / np.iinfo(audio_data.dtype).max # Convert the normalized audio data to float64 audio_data_float64 = audio_data_normalized.astype(np.float64) # Use the speech recognition pipeline to transcribe the audio output = pipe(audio_data_float64) print(f"Output: {output}") # Print the output to see what it contains # Check if the output contains 'text' if 'text' in output: transcription = output["text"] else: print("The output does not contain 'text'") return # Print the transcription print(f"Transcription: {transcription}") # Use the translation pipeline to translate the transcription translated_text = translator(transcription, return_tensors="pt") print(f"Translated text: {translated_text}") # Print the translated text to see what it contains # Check if the translated text contains 'generated_token_ids' if 'generated_token_ids' in translated_text[0]: # Decode the tokens into text translated_text_str = translator.tokenizer.decode(translated_text[0]['generated_token_ids']) else: print("The translated text does not contain 'generated_token_ids'") return # Print the translated text string print(f"Translated text string: {translated_text_str}") # Use the text-to-speech pipeline to synthesize the translated text synthesised_speech = tts(translated_text_str) print(f"Synthesised speech: {synthesised_speech}") # Print the synthesised speech to see what it contains # Check if the synthesised speech contains 'audio' if 'audio' in synthesised_speech: synthesised_speech_data = synthesised_speech['audio'] else: print("The synthesised speech does not contain 'audio'") return # Flatten the audio data synthesised_speech_data = synthesised_speech_data.flatten() # Print the shape and type of the synthesised speech data print(f"Synthesised speech data type: {type(synthesised_speech_data)}, Synthesised speech data shape: {synthesised_speech_data.shape}") # Scale the audio data to the range of int16 format synthesised_speech = (synthesised_speech_data * 32767).astype(np.int16) return 16000, synthesised_speech # Define the Gradio interface iface = gr.Interface( fn=translate_speech, inputs=gr.inputs.Audio(source="microphone", type="file"), # Change this line outputs=gr.outputs.Audio(type="numpy"), title="Hausa to English Translation", description="Realtime demo for Hausa to English translation using speech recognition and text-to-speech synthesis." ) iface.launch()