update
Browse files- Dockerfile +1 -1
- main.py +81 -1
- requirements.txt +4 -0
Dockerfile
CHANGED
@@ -2,4 +2,4 @@ FROM python:3.9
|
|
2 |
|
3 |
COPY . .
|
4 |
|
5 |
-
CMD ["
|
|
|
2 |
|
3 |
COPY . .
|
4 |
|
5 |
+
CMD ["uvicorn", "main:app", "--host", "0.0.0.0", "--port", "7860"]
|
main.py
CHANGED
@@ -1 +1,81 @@
|
|
1 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import base64
|
2 |
+
import logging
|
3 |
+
from io import BytesIO
|
4 |
+
from typing import List
|
5 |
+
import clip
|
6 |
+
import numpy as np
|
7 |
+
import torch
|
8 |
+
from PIL import Image
|
9 |
+
from fastapi import FastAPI, HTTPException
|
10 |
+
from pydantic import BaseModel
|
11 |
+
|
12 |
+
logging.basicConfig(
|
13 |
+
format='%(asctime)s.%(msecs)03d %(levelname)-8s %(message)s',
|
14 |
+
level=logging.DEBUG,
|
15 |
+
datefmt='%Y-%m-%d %H:%M:%S'
|
16 |
+
)
|
17 |
+
model, preprocess = clip.load("models/ViT-B-32.pt")
|
18 |
+
model.cpu().eval()
|
19 |
+
|
20 |
+
app = FastAPI()
|
21 |
+
|
22 |
+
|
23 |
+
class Texts(BaseModel):
|
24 |
+
texts_source: List[str]
|
25 |
+
texts_target: List[str]
|
26 |
+
|
27 |
+
|
28 |
+
class Images(BaseModel):
|
29 |
+
images: List[str]
|
30 |
+
texts: List[str]
|
31 |
+
|
32 |
+
|
33 |
+
class CLIPResponse(BaseModel):
|
34 |
+
similarity: List[List[float]]
|
35 |
+
|
36 |
+
|
37 |
+
@app.post("/clip_image_to_text", response_model=CLIPResponse, tags=["CLIP"])
|
38 |
+
def clip_image_to_text(data: Images) -> CLIPResponse:
|
39 |
+
preprocessed_images = []
|
40 |
+
for image in data.images:
|
41 |
+
if 'base64,' not in image:
|
42 |
+
raise HTTPException(422, "Image must be in base64")
|
43 |
+
image = BytesIO(base64.b64decode(image.split('base64,')[-1]))
|
44 |
+
image = Image.open(image)
|
45 |
+
preprocessed_images.append(preprocess(image))
|
46 |
+
|
47 |
+
image_input = torch.tensor(np.stack(preprocessed_images)).cpu()
|
48 |
+
text_tokens = clip.tokenize(["This is the " + desc for desc in data.texts]).cpu()
|
49 |
+
|
50 |
+
with torch.no_grad():
|
51 |
+
image_features = model.encode_image(image_input).float()
|
52 |
+
text_features = model.encode_text(text_tokens).float()
|
53 |
+
|
54 |
+
image_features /= image_features.norm(dim=-1, keepdim=True)
|
55 |
+
text_features /= text_features.norm(dim=-1, keepdim=True)
|
56 |
+
similarity = text_features.cpu().numpy() @ image_features.cpu().numpy().T
|
57 |
+
logging.debug(f"Similarity: {similarity}")
|
58 |
+
return CLIPResponse(similarity=similarity.tolist())
|
59 |
+
|
60 |
+
|
61 |
+
@app.post("/clip_text_to_text", response_model=CLIPResponse, tags=["CLIP"])
|
62 |
+
def clip_text_to_text(data: Texts) -> CLIPResponse:
|
63 |
+
text_input = clip.tokenize([f"This is {text}" for text in data.texts_source]).cpu()
|
64 |
+
text_output = clip.tokenize(data.texts_target).cpu()
|
65 |
+
|
66 |
+
with torch.no_grad():
|
67 |
+
input_features = model.encode_text(text_input).float()
|
68 |
+
output_features = model.encode_text(text_output).float()
|
69 |
+
|
70 |
+
input_features /= input_features.norm(dim=-1, keepdim=True)
|
71 |
+
output_features /= output_features.norm(dim=-1, keepdim=True)
|
72 |
+
|
73 |
+
similarity = output_features.cpu().numpy() @ input_features.cpu().numpy().T
|
74 |
+
logging.debug(f"Similarity: {similarity}")
|
75 |
+
return CLIPResponse(similarity=similarity.tolist())
|
76 |
+
|
77 |
+
|
78 |
+
@app.get("/ping", tags=["TEST"])
|
79 |
+
def ping():
|
80 |
+
return "pong"
|
81 |
+
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
fastapi==0.103.0
|
2 |
+
uvicorn==0.23.2
|
3 |
+
pydantic==2.3.0
|
4 |
+
clip @ git+https://github.com/openai/CLIP.git@a1d071733d7111c9c014f024669f959182114e33
|