Bagus's picture
Update app.py
8717fa8 verified
import gradio as gr
import numpy as np
import torch
from datasets import load_dataset
from deep_translator import GoogleTranslator
from transformers import (
AutoTokenizer,
SpeechT5ForTextToSpeech,
SpeechT5HifiGan,
SpeechT5Processor,
VitsModel,
pipeline,
)
# device = "cuda:0" if torch.cuda.is_available() else "cpu"
device = "cpu"
# load speech translation checkpoint
asr_pipe = pipeline("automatic-speech-recognition",
model="openai/whisper-base", device=device)
# load text-to-speech mms-tts-id model (speaker embeddings included)
model = VitsModel.from_pretrained("facebook/mms-tts-ind")
tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-ind")
def translate(audio):
outputs = asr_pipe(audio, max_new_tokens=256,
generate_kwargs={"task": "translate"})
return outputs["text"]
def synthesise(text):
inputs = tokenizer(text=text, return_tensors="pt")
with torch.no_grad():
speech = model(**inputs).waveform
return speech.reshape(-1, 1).cpu()
def speech_to_speech_translation(audio):
translated_text = translate(audio)
google_translated = GoogleTranslator(
source="en", target="id").translate(translated_text)
synthesised_speech = synthesise(google_translated)
synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16)
return 16000, synthesised_speech
title = "Cascaded STST"
description = """
Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in Indonesian. Demo uses OpenAI's [Whisper Base](https://huggingface.co/openai/whisper-base) model for speech transcription, [Deep Translator](https://github.com/nidhaloff/deep-translator) for translation, and Meta's
[MMS TTS IND](https://huggingface.co/facebook/mms-tts-ind) model for text-to-speech:
![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation")
"""
demo = gr.Blocks()
mic_translate = gr.Interface(
fn=speech_to_speech_translation,
inputs=gr.Audio(sources="microphone", type="filepath"),
outputs=gr.Audio(label="Generated Speech", type="numpy"),
title=title,
description=description,
)
file_translate = gr.Interface(
fn=speech_to_speech_translation,
inputs=gr.Audio(sources="upload", type="filepath"),
outputs=gr.Audio(label="Generated Speech", type="numpy"),
examples=[["./example.wav"]],
title=title,
description=description,
)
with demo:
gr.TabbedInterface([mic_translate, file_translate],
["Microphone", "Audio File"])
demo.launch()