Spaces:
Runtime error
Runtime error
File size: 33,001 Bytes
66982e9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 |
# Copyright 2023 The HuggingFace Team. All rights reserved.
# `TemporalConvLayer` Copyright 2023 Alibaba DAMO-VILAB, The ModelScope Team and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from functools import partial
from typing import Optional
import torch
import torch.nn as nn
import torch.nn.functional as F
from .attention import AdaGroupNorm
class Upsample1D(nn.Module):
"""
An upsampling layer with an optional convolution.
Parameters:
channels: channels in the inputs and outputs.
use_conv: a bool determining if a convolution is applied.
use_conv_transpose:
out_channels:
"""
def __init__(self, channels, use_conv=False, use_conv_transpose=False, out_channels=None, name="conv"):
super().__init__()
self.channels = channels
self.out_channels = out_channels or channels
self.use_conv = use_conv
self.use_conv_transpose = use_conv_transpose
self.name = name
self.conv = None
if use_conv_transpose:
self.conv = nn.ConvTranspose1d(channels, self.out_channels, 4, 2, 1)
elif use_conv:
self.conv = nn.Conv1d(self.channels, self.out_channels, 3, padding=1)
def forward(self, x):
assert x.shape[1] == self.channels
if self.use_conv_transpose:
return self.conv(x)
x = F.interpolate(x, scale_factor=2.0, mode="nearest")
if self.use_conv:
x = self.conv(x)
return x
class Downsample1D(nn.Module):
"""
A downsampling layer with an optional convolution.
Parameters:
channels: channels in the inputs and outputs.
use_conv: a bool determining if a convolution is applied.
out_channels:
padding:
"""
def __init__(self, channels, use_conv=False, out_channels=None, padding=1, name="conv"):
super().__init__()
self.channels = channels
self.out_channels = out_channels or channels
self.use_conv = use_conv
self.padding = padding
stride = 2
self.name = name
if use_conv:
self.conv = nn.Conv1d(self.channels, self.out_channels, 3, stride=stride, padding=padding)
else:
assert self.channels == self.out_channels
self.conv = nn.AvgPool1d(kernel_size=stride, stride=stride)
def forward(self, x):
assert x.shape[1] == self.channels
return self.conv(x)
class Upsample2D(nn.Module):
"""
An upsampling layer with an optional convolution.
Parameters:
channels: channels in the inputs and outputs.
use_conv: a bool determining if a convolution is applied.
use_conv_transpose:
out_channels:
"""
def __init__(self, channels, use_conv=False, use_conv_transpose=False, out_channels=None, name="conv"):
super().__init__()
self.channels = channels
self.out_channels = out_channels or channels
self.use_conv = use_conv
self.use_conv_transpose = use_conv_transpose
self.name = name
conv = None
if use_conv_transpose:
conv = nn.ConvTranspose2d(channels, self.out_channels, 4, 2, 1)
elif use_conv:
conv = nn.Conv2d(self.channels, self.out_channels, 3, padding=1)
# TODO(Suraj, Patrick) - clean up after weight dicts are correctly renamed
if name == "conv":
self.conv = conv
else:
self.Conv2d_0 = conv
def forward(self, hidden_states, output_size=None):
assert hidden_states.shape[1] == self.channels
if self.use_conv_transpose:
return self.conv(hidden_states)
# Cast to float32 to as 'upsample_nearest2d_out_frame' op does not support bfloat16
# TODO(Suraj): Remove this cast once the issue is fixed in PyTorch
# https://github.com/pytorch/pytorch/issues/86679
dtype = hidden_states.dtype
if dtype == torch.bfloat16:
hidden_states = hidden_states.to(torch.float32)
# upsample_nearest_nhwc fails with large batch sizes. see https://github.com/huggingface/diffusers/issues/984
if hidden_states.shape[0] >= 64:
hidden_states = hidden_states.contiguous()
# if `output_size` is passed we force the interpolation output
# size and do not make use of `scale_factor=2`
if output_size is None:
hidden_states = F.interpolate(hidden_states, scale_factor=2.0, mode="nearest")
else:
hidden_states = F.interpolate(hidden_states, size=output_size, mode="nearest")
# If the input is bfloat16, we cast back to bfloat16
if dtype == torch.bfloat16:
hidden_states = hidden_states.to(dtype)
# TODO(Suraj, Patrick) - clean up after weight dicts are correctly renamed
if self.use_conv:
if self.name == "conv":
hidden_states = self.conv(hidden_states)
else:
hidden_states = self.Conv2d_0(hidden_states)
return hidden_states
class Downsample2D(nn.Module):
"""
A downsampling layer with an optional convolution.
Parameters:
channels: channels in the inputs and outputs.
use_conv: a bool determining if a convolution is applied.
out_channels:
padding:
"""
def __init__(self, channels, use_conv=False, out_channels=None, padding=1, name="conv"):
super().__init__()
self.channels = channels
self.out_channels = out_channels or channels
self.use_conv = use_conv
self.padding = padding
stride = 2
self.name = name
if use_conv:
conv = nn.Conv2d(self.channels, self.out_channels, 3, stride=stride, padding=padding)
else:
assert self.channels == self.out_channels
conv = nn.AvgPool2d(kernel_size=stride, stride=stride)
# TODO(Suraj, Patrick) - clean up after weight dicts are correctly renamed
if name == "conv":
self.Conv2d_0 = conv
self.conv = conv
elif name == "Conv2d_0":
self.conv = conv
else:
self.conv = conv
def forward(self, hidden_states):
assert hidden_states.shape[1] == self.channels
if self.use_conv and self.padding == 0:
pad = (0, 1, 0, 1)
hidden_states = F.pad(hidden_states, pad, mode="constant", value=0)
assert hidden_states.shape[1] == self.channels
hidden_states = self.conv(hidden_states)
return hidden_states
class FirUpsample2D(nn.Module):
def __init__(self, channels=None, out_channels=None, use_conv=False, fir_kernel=(1, 3, 3, 1)):
super().__init__()
out_channels = out_channels if out_channels else channels
if use_conv:
self.Conv2d_0 = nn.Conv2d(channels, out_channels, kernel_size=3, stride=1, padding=1)
self.use_conv = use_conv
self.fir_kernel = fir_kernel
self.out_channels = out_channels
def _upsample_2d(self, hidden_states, weight=None, kernel=None, factor=2, gain=1):
"""Fused `upsample_2d()` followed by `Conv2d()`.
Padding is performed only once at the beginning, not between the operations. The fused op is considerably more
efficient than performing the same calculation using standard TensorFlow ops. It supports gradients of
arbitrary order.
Args:
hidden_states: Input tensor of the shape `[N, C, H, W]` or `[N, H, W, C]`.
weight: Weight tensor of the shape `[filterH, filterW, inChannels,
outChannels]`. Grouped convolution can be performed by `inChannels = x.shape[0] // numGroups`.
kernel: FIR filter of the shape `[firH, firW]` or `[firN]`
(separable). The default is `[1] * factor`, which corresponds to nearest-neighbor upsampling.
factor: Integer upsampling factor (default: 2).
gain: Scaling factor for signal magnitude (default: 1.0).
Returns:
output: Tensor of the shape `[N, C, H * factor, W * factor]` or `[N, H * factor, W * factor, C]`, and same
datatype as `hidden_states`.
"""
assert isinstance(factor, int) and factor >= 1
# Setup filter kernel.
if kernel is None:
kernel = [1] * factor
# setup kernel
kernel = torch.tensor(kernel, dtype=torch.float32)
if kernel.ndim == 1:
kernel = torch.outer(kernel, kernel)
kernel /= torch.sum(kernel)
kernel = kernel * (gain * (factor**2))
if self.use_conv:
convH = weight.shape[2]
convW = weight.shape[3]
inC = weight.shape[1]
pad_value = (kernel.shape[0] - factor) - (convW - 1)
stride = (factor, factor)
# Determine data dimensions.
output_shape = (
(hidden_states.shape[2] - 1) * factor + convH,
(hidden_states.shape[3] - 1) * factor + convW,
)
output_padding = (
output_shape[0] - (hidden_states.shape[2] - 1) * stride[0] - convH,
output_shape[1] - (hidden_states.shape[3] - 1) * stride[1] - convW,
)
assert output_padding[0] >= 0 and output_padding[1] >= 0
num_groups = hidden_states.shape[1] // inC
# Transpose weights.
weight = torch.reshape(weight, (num_groups, -1, inC, convH, convW))
weight = torch.flip(weight, dims=[3, 4]).permute(0, 2, 1, 3, 4)
weight = torch.reshape(weight, (num_groups * inC, -1, convH, convW))
inverse_conv = F.conv_transpose2d(
hidden_states, weight, stride=stride, output_padding=output_padding, padding=0
)
output = upfirdn2d_native(
inverse_conv,
torch.tensor(kernel, device=inverse_conv.device),
pad=((pad_value + 1) // 2 + factor - 1, pad_value // 2 + 1),
)
else:
pad_value = kernel.shape[0] - factor
output = upfirdn2d_native(
hidden_states,
torch.tensor(kernel, device=hidden_states.device),
up=factor,
pad=((pad_value + 1) // 2 + factor - 1, pad_value // 2),
)
return output
def forward(self, hidden_states):
if self.use_conv:
height = self._upsample_2d(hidden_states, self.Conv2d_0.weight, kernel=self.fir_kernel)
height = height + self.Conv2d_0.bias.reshape(1, -1, 1, 1)
else:
height = self._upsample_2d(hidden_states, kernel=self.fir_kernel, factor=2)
return height
class FirDownsample2D(nn.Module):
def __init__(self, channels=None, out_channels=None, use_conv=False, fir_kernel=(1, 3, 3, 1)):
super().__init__()
out_channels = out_channels if out_channels else channels
if use_conv:
self.Conv2d_0 = nn.Conv2d(channels, out_channels, kernel_size=3, stride=1, padding=1)
self.fir_kernel = fir_kernel
self.use_conv = use_conv
self.out_channels = out_channels
def _downsample_2d(self, hidden_states, weight=None, kernel=None, factor=2, gain=1):
"""Fused `Conv2d()` followed by `downsample_2d()`.
Padding is performed only once at the beginning, not between the operations. The fused op is considerably more
efficient than performing the same calculation using standard TensorFlow ops. It supports gradients of
arbitrary order.
Args:
hidden_states: Input tensor of the shape `[N, C, H, W]` or `[N, H, W, C]`.
weight:
Weight tensor of the shape `[filterH, filterW, inChannels, outChannels]`. Grouped convolution can be
performed by `inChannels = x.shape[0] // numGroups`.
kernel: FIR filter of the shape `[firH, firW]` or `[firN]` (separable). The default is `[1] *
factor`, which corresponds to average pooling.
factor: Integer downsampling factor (default: 2).
gain: Scaling factor for signal magnitude (default: 1.0).
Returns:
output: Tensor of the shape `[N, C, H // factor, W // factor]` or `[N, H // factor, W // factor, C]`, and
same datatype as `x`.
"""
assert isinstance(factor, int) and factor >= 1
if kernel is None:
kernel = [1] * factor
# setup kernel
kernel = torch.tensor(kernel, dtype=torch.float32)
if kernel.ndim == 1:
kernel = torch.outer(kernel, kernel)
kernel /= torch.sum(kernel)
kernel = kernel * gain
if self.use_conv:
_, _, convH, convW = weight.shape
pad_value = (kernel.shape[0] - factor) + (convW - 1)
stride_value = [factor, factor]
upfirdn_input = upfirdn2d_native(
hidden_states,
torch.tensor(kernel, device=hidden_states.device),
pad=((pad_value + 1) // 2, pad_value // 2),
)
output = F.conv2d(upfirdn_input, weight, stride=stride_value, padding=0)
else:
pad_value = kernel.shape[0] - factor
output = upfirdn2d_native(
hidden_states,
torch.tensor(kernel, device=hidden_states.device),
down=factor,
pad=((pad_value + 1) // 2, pad_value // 2),
)
return output
def forward(self, hidden_states):
if self.use_conv:
downsample_input = self._downsample_2d(hidden_states, weight=self.Conv2d_0.weight, kernel=self.fir_kernel)
hidden_states = downsample_input + self.Conv2d_0.bias.reshape(1, -1, 1, 1)
else:
hidden_states = self._downsample_2d(hidden_states, kernel=self.fir_kernel, factor=2)
return hidden_states
# downsample/upsample layer used in k-upscaler, might be able to use FirDownsample2D/DirUpsample2D instead
class KDownsample2D(nn.Module):
def __init__(self, pad_mode="reflect"):
super().__init__()
self.pad_mode = pad_mode
kernel_1d = torch.tensor([[1 / 8, 3 / 8, 3 / 8, 1 / 8]])
self.pad = kernel_1d.shape[1] // 2 - 1
self.register_buffer("kernel", kernel_1d.T @ kernel_1d, persistent=False)
def forward(self, x):
x = F.pad(x, (self.pad,) * 4, self.pad_mode)
weight = x.new_zeros([x.shape[1], x.shape[1], self.kernel.shape[0], self.kernel.shape[1]])
indices = torch.arange(x.shape[1], device=x.device)
weight[indices, indices] = self.kernel.to(weight)
return F.conv2d(x, weight, stride=2)
class KUpsample2D(nn.Module):
def __init__(self, pad_mode="reflect"):
super().__init__()
self.pad_mode = pad_mode
kernel_1d = torch.tensor([[1 / 8, 3 / 8, 3 / 8, 1 / 8]]) * 2
self.pad = kernel_1d.shape[1] // 2 - 1
self.register_buffer("kernel", kernel_1d.T @ kernel_1d, persistent=False)
def forward(self, x):
x = F.pad(x, ((self.pad + 1) // 2,) * 4, self.pad_mode)
weight = x.new_zeros([x.shape[1], x.shape[1], self.kernel.shape[0], self.kernel.shape[1]])
indices = torch.arange(x.shape[1], device=x.device)
weight[indices, indices] = self.kernel.to(weight)
return F.conv_transpose2d(x, weight, stride=2, padding=self.pad * 2 + 1)
class ResnetBlock2D(nn.Module):
r"""
A Resnet block.
Parameters:
in_channels (`int`): The number of channels in the input.
out_channels (`int`, *optional*, default to be `None`):
The number of output channels for the first conv2d layer. If None, same as `in_channels`.
dropout (`float`, *optional*, defaults to `0.0`): The dropout probability to use.
temb_channels (`int`, *optional*, default to `512`): the number of channels in timestep embedding.
groups (`int`, *optional*, default to `32`): The number of groups to use for the first normalization layer.
groups_out (`int`, *optional*, default to None):
The number of groups to use for the second normalization layer. if set to None, same as `groups`.
eps (`float`, *optional*, defaults to `1e-6`): The epsilon to use for the normalization.
non_linearity (`str`, *optional*, default to `"swish"`): the activation function to use.
time_embedding_norm (`str`, *optional*, default to `"default"` ): Time scale shift config.
By default, apply timestep embedding conditioning with a simple shift mechanism. Choose "scale_shift" or
"ada_group" for a stronger conditioning with scale and shift.
kernel (`torch.FloatTensor`, optional, default to None): FIR filter, see
[`~models.resnet.FirUpsample2D`] and [`~models.resnet.FirDownsample2D`].
output_scale_factor (`float`, *optional*, default to be `1.0`): the scale factor to use for the output.
use_in_shortcut (`bool`, *optional*, default to `True`):
If `True`, add a 1x1 nn.conv2d layer for skip-connection.
up (`bool`, *optional*, default to `False`): If `True`, add an upsample layer.
down (`bool`, *optional*, default to `False`): If `True`, add a downsample layer.
conv_shortcut_bias (`bool`, *optional*, default to `True`): If `True`, adds a learnable bias to the
`conv_shortcut` output.
conv_2d_out_channels (`int`, *optional*, default to `None`): the number of channels in the output.
If None, same as `out_channels`.
"""
def __init__(
self,
*,
in_channels,
out_channels=None,
conv_shortcut=False,
dropout=0.0,
temb_channels=512,
groups=32,
groups_out=None,
pre_norm=True,
eps=1e-6,
non_linearity="swish",
time_embedding_norm="default", # default, scale_shift, ada_group
kernel=None,
output_scale_factor=1.0,
use_in_shortcut=None,
up=False,
down=False,
conv_shortcut_bias: bool = True,
conv_2d_out_channels: Optional[int] = None,
):
super().__init__()
self.pre_norm = pre_norm
self.pre_norm = True
self.in_channels = in_channels
out_channels = in_channels if out_channels is None else out_channels
self.out_channels = out_channels
self.use_conv_shortcut = conv_shortcut
self.up = up
self.down = down
self.output_scale_factor = output_scale_factor
self.time_embedding_norm = time_embedding_norm
if groups_out is None:
groups_out = groups
if self.time_embedding_norm == "ada_group":
self.norm1 = AdaGroupNorm(temb_channels, in_channels, groups, eps=eps)
else:
self.norm1 = torch.nn.GroupNorm(num_groups=groups, num_channels=in_channels, eps=eps, affine=True)
self.conv1 = torch.nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
if temb_channels is not None:
if self.time_embedding_norm == "default":
self.time_emb_proj = torch.nn.Linear(temb_channels, out_channels)
elif self.time_embedding_norm == "scale_shift":
self.time_emb_proj = torch.nn.Linear(temb_channels, 2 * out_channels)
elif self.time_embedding_norm == "ada_group":
self.time_emb_proj = None
else:
raise ValueError(f"unknown time_embedding_norm : {self.time_embedding_norm} ")
else:
self.time_emb_proj = None
if self.time_embedding_norm == "ada_group":
self.norm2 = AdaGroupNorm(temb_channels, out_channels, groups_out, eps=eps)
else:
self.norm2 = torch.nn.GroupNorm(num_groups=groups_out, num_channels=out_channels, eps=eps, affine=True)
self.dropout = torch.nn.Dropout(dropout)
conv_2d_out_channels = conv_2d_out_channels or out_channels
self.conv2 = torch.nn.Conv2d(out_channels, conv_2d_out_channels, kernel_size=3, stride=1, padding=1)
if non_linearity == "swish":
self.nonlinearity = lambda x: F.silu(x)
elif non_linearity == "mish":
self.nonlinearity = nn.Mish()
elif non_linearity == "silu":
self.nonlinearity = nn.SiLU()
elif non_linearity == "gelu":
self.nonlinearity = nn.GELU()
self.upsample = self.downsample = None
if self.up:
if kernel == "fir":
fir_kernel = (1, 3, 3, 1)
self.upsample = lambda x: upsample_2d(x, kernel=fir_kernel)
elif kernel == "sde_vp":
self.upsample = partial(F.interpolate, scale_factor=2.0, mode="nearest")
else:
self.upsample = Upsample2D(in_channels, use_conv=False)
elif self.down:
if kernel == "fir":
fir_kernel = (1, 3, 3, 1)
self.downsample = lambda x: downsample_2d(x, kernel=fir_kernel)
elif kernel == "sde_vp":
self.downsample = partial(F.avg_pool2d, kernel_size=2, stride=2)
else:
self.downsample = Downsample2D(in_channels, use_conv=False, padding=1, name="op")
self.use_in_shortcut = self.in_channels != conv_2d_out_channels if use_in_shortcut is None else use_in_shortcut
self.conv_shortcut = None
if self.use_in_shortcut:
self.conv_shortcut = torch.nn.Conv2d(
in_channels, conv_2d_out_channels, kernel_size=1, stride=1, padding=0, bias=conv_shortcut_bias
)
def forward(self, input_tensor, temb):
hidden_states = input_tensor
if self.time_embedding_norm == "ada_group":
hidden_states = self.norm1(hidden_states, temb)
else:
hidden_states = self.norm1(hidden_states)
hidden_states = self.nonlinearity(hidden_states)
if self.upsample is not None:
# upsample_nearest_nhwc fails with large batch sizes. see https://github.com/huggingface/diffusers/issues/984
if hidden_states.shape[0] >= 64:
input_tensor = input_tensor.contiguous()
hidden_states = hidden_states.contiguous()
input_tensor = self.upsample(input_tensor)
hidden_states = self.upsample(hidden_states)
elif self.downsample is not None:
input_tensor = self.downsample(input_tensor)
hidden_states = self.downsample(hidden_states)
hidden_states = self.conv1(hidden_states)
if self.time_emb_proj is not None:
temb = self.time_emb_proj(self.nonlinearity(temb))[:, :, None, None]
if temb is not None and self.time_embedding_norm == "default":
hidden_states = hidden_states + temb
if self.time_embedding_norm == "ada_group":
hidden_states = self.norm2(hidden_states, temb)
else:
hidden_states = self.norm2(hidden_states)
if temb is not None and self.time_embedding_norm == "scale_shift":
scale, shift = torch.chunk(temb, 2, dim=1)
hidden_states = hidden_states * (1 + scale) + shift
hidden_states = self.nonlinearity(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.conv2(hidden_states)
if self.conv_shortcut is not None:
input_tensor = self.conv_shortcut(input_tensor)
output_tensor = (input_tensor + hidden_states) / self.output_scale_factor
return output_tensor
class Mish(torch.nn.Module):
def forward(self, hidden_states):
return hidden_states * torch.tanh(torch.nn.functional.softplus(hidden_states))
# unet_rl.py
def rearrange_dims(tensor):
if len(tensor.shape) == 2:
return tensor[:, :, None]
if len(tensor.shape) == 3:
return tensor[:, :, None, :]
elif len(tensor.shape) == 4:
return tensor[:, :, 0, :]
else:
raise ValueError(f"`len(tensor)`: {len(tensor)} has to be 2, 3 or 4.")
class Conv1dBlock(nn.Module):
"""
Conv1d --> GroupNorm --> Mish
"""
def __init__(self, inp_channels, out_channels, kernel_size, n_groups=8):
super().__init__()
self.conv1d = nn.Conv1d(inp_channels, out_channels, kernel_size, padding=kernel_size // 2)
self.group_norm = nn.GroupNorm(n_groups, out_channels)
self.mish = nn.Mish()
def forward(self, x):
x = self.conv1d(x)
x = rearrange_dims(x)
x = self.group_norm(x)
x = rearrange_dims(x)
x = self.mish(x)
return x
# unet_rl.py
class ResidualTemporalBlock1D(nn.Module):
def __init__(self, inp_channels, out_channels, embed_dim, kernel_size=5):
super().__init__()
self.conv_in = Conv1dBlock(inp_channels, out_channels, kernel_size)
self.conv_out = Conv1dBlock(out_channels, out_channels, kernel_size)
self.time_emb_act = nn.Mish()
self.time_emb = nn.Linear(embed_dim, out_channels)
self.residual_conv = (
nn.Conv1d(inp_channels, out_channels, 1) if inp_channels != out_channels else nn.Identity()
)
def forward(self, x, t):
"""
Args:
x : [ batch_size x inp_channels x horizon ]
t : [ batch_size x embed_dim ]
returns:
out : [ batch_size x out_channels x horizon ]
"""
t = self.time_emb_act(t)
t = self.time_emb(t)
out = self.conv_in(x) + rearrange_dims(t)
out = self.conv_out(out)
return out + self.residual_conv(x)
def upsample_2d(hidden_states, kernel=None, factor=2, gain=1):
r"""Upsample2D a batch of 2D images with the given filter.
Accepts a batch of 2D images of the shape `[N, C, H, W]` or `[N, H, W, C]` and upsamples each image with the given
filter. The filter is normalized so that if the input pixels are constant, they will be scaled by the specified
`gain`. Pixels outside the image are assumed to be zero, and the filter is padded with zeros so that its shape is
a: multiple of the upsampling factor.
Args:
hidden_states: Input tensor of the shape `[N, C, H, W]` or `[N, H, W, C]`.
kernel: FIR filter of the shape `[firH, firW]` or `[firN]`
(separable). The default is `[1] * factor`, which corresponds to nearest-neighbor upsampling.
factor: Integer upsampling factor (default: 2).
gain: Scaling factor for signal magnitude (default: 1.0).
Returns:
output: Tensor of the shape `[N, C, H * factor, W * factor]`
"""
assert isinstance(factor, int) and factor >= 1
if kernel is None:
kernel = [1] * factor
kernel = torch.tensor(kernel, dtype=torch.float32)
if kernel.ndim == 1:
kernel = torch.outer(kernel, kernel)
kernel /= torch.sum(kernel)
kernel = kernel * (gain * (factor**2))
pad_value = kernel.shape[0] - factor
output = upfirdn2d_native(
hidden_states,
kernel.to(device=hidden_states.device),
up=factor,
pad=((pad_value + 1) // 2 + factor - 1, pad_value // 2),
)
return output
def downsample_2d(hidden_states, kernel=None, factor=2, gain=1):
r"""Downsample2D a batch of 2D images with the given filter.
Accepts a batch of 2D images of the shape `[N, C, H, W]` or `[N, H, W, C]` and downsamples each image with the
given filter. The filter is normalized so that if the input pixels are constant, they will be scaled by the
specified `gain`. Pixels outside the image are assumed to be zero, and the filter is padded with zeros so that its
shape is a multiple of the downsampling factor.
Args:
hidden_states: Input tensor of the shape `[N, C, H, W]` or `[N, H, W, C]`.
kernel: FIR filter of the shape `[firH, firW]` or `[firN]`
(separable). The default is `[1] * factor`, which corresponds to average pooling.
factor: Integer downsampling factor (default: 2).
gain: Scaling factor for signal magnitude (default: 1.0).
Returns:
output: Tensor of the shape `[N, C, H // factor, W // factor]`
"""
assert isinstance(factor, int) and factor >= 1
if kernel is None:
kernel = [1] * factor
kernel = torch.tensor(kernel, dtype=torch.float32)
if kernel.ndim == 1:
kernel = torch.outer(kernel, kernel)
kernel /= torch.sum(kernel)
kernel = kernel * gain
pad_value = kernel.shape[0] - factor
output = upfirdn2d_native(
hidden_states, kernel.to(device=hidden_states.device), down=factor, pad=((pad_value + 1) // 2, pad_value // 2)
)
return output
def upfirdn2d_native(tensor, kernel, up=1, down=1, pad=(0, 0)):
up_x = up_y = up
down_x = down_y = down
pad_x0 = pad_y0 = pad[0]
pad_x1 = pad_y1 = pad[1]
_, channel, in_h, in_w = tensor.shape
tensor = tensor.reshape(-1, in_h, in_w, 1)
_, in_h, in_w, minor = tensor.shape
kernel_h, kernel_w = kernel.shape
out = tensor.view(-1, in_h, 1, in_w, 1, minor)
out = F.pad(out, [0, 0, 0, up_x - 1, 0, 0, 0, up_y - 1])
out = out.view(-1, in_h * up_y, in_w * up_x, minor)
out = F.pad(out, [0, 0, max(pad_x0, 0), max(pad_x1, 0), max(pad_y0, 0), max(pad_y1, 0)])
out = out.to(tensor.device) # Move back to mps if necessary
out = out[
:,
max(-pad_y0, 0) : out.shape[1] - max(-pad_y1, 0),
max(-pad_x0, 0) : out.shape[2] - max(-pad_x1, 0),
:,
]
out = out.permute(0, 3, 1, 2)
out = out.reshape([-1, 1, in_h * up_y + pad_y0 + pad_y1, in_w * up_x + pad_x0 + pad_x1])
w = torch.flip(kernel, [0, 1]).view(1, 1, kernel_h, kernel_w)
out = F.conv2d(out, w)
out = out.reshape(
-1,
minor,
in_h * up_y + pad_y0 + pad_y1 - kernel_h + 1,
in_w * up_x + pad_x0 + pad_x1 - kernel_w + 1,
)
out = out.permute(0, 2, 3, 1)
out = out[:, ::down_y, ::down_x, :]
out_h = (in_h * up_y + pad_y0 + pad_y1 - kernel_h) // down_y + 1
out_w = (in_w * up_x + pad_x0 + pad_x1 - kernel_w) // down_x + 1
return out.view(-1, channel, out_h, out_w)
class TemporalConvLayer(nn.Module):
"""
Temporal convolutional layer that can be used for video (sequence of images) input Code mostly copied from:
https://github.com/modelscope/modelscope/blob/1509fdb973e5871f37148a4b5e5964cafd43e64d/modelscope/models/multi_modal/video_synthesis/unet_sd.py#L1016
"""
def __init__(self, in_dim, out_dim=None, dropout=0.0):
super().__init__()
out_dim = out_dim or in_dim
self.in_dim = in_dim
self.out_dim = out_dim
# conv layers
self.conv1 = nn.Sequential(
nn.GroupNorm(32, in_dim), nn.SiLU(), nn.Conv3d(in_dim, out_dim, (3, 1, 1), padding=(1, 0, 0))
)
self.conv2 = nn.Sequential(
nn.GroupNorm(32, out_dim),
nn.SiLU(),
nn.Dropout(dropout),
nn.Conv3d(out_dim, in_dim, (3, 1, 1), padding=(1, 0, 0)),
)
self.conv3 = nn.Sequential(
nn.GroupNorm(32, out_dim),
nn.SiLU(),
nn.Dropout(dropout),
nn.Conv3d(out_dim, in_dim, (3, 1, 1), padding=(1, 0, 0)),
)
self.conv4 = nn.Sequential(
nn.GroupNorm(32, out_dim),
nn.SiLU(),
nn.Dropout(dropout),
nn.Conv3d(out_dim, in_dim, (3, 1, 1), padding=(1, 0, 0)),
)
# zero out the last layer params,so the conv block is identity
nn.init.zeros_(self.conv4[-1].weight)
nn.init.zeros_(self.conv4[-1].bias)
def forward(self, hidden_states, num_frames=1):
hidden_states = (
hidden_states[None, :].reshape((-1, num_frames) + hidden_states.shape[1:]).permute(0, 2, 1, 3, 4)
)
identity = hidden_states
hidden_states = self.conv1(hidden_states)
hidden_states = self.conv2(hidden_states)
hidden_states = self.conv3(hidden_states)
hidden_states = self.conv4(hidden_states)
hidden_states = identity + hidden_states
hidden_states = hidden_states.permute(0, 2, 1, 3, 4).reshape(
(hidden_states.shape[0] * hidden_states.shape[2], -1) + hidden_states.shape[3:]
)
return hidden_states
|