File size: 15,490 Bytes
66982e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
# Copyright 2023 Katherine Crowson, The HuggingFace Team and hlky. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

### This file has been modified for the purposes of the ConsistencyTTA generation. ###

import math
from typing import List, Optional, Tuple, Union

import numpy as np
import torch

from .utils.configuration_utils import ConfigMixin, register_to_config
from .utils.scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput


# Copied from diffusers.schedulers.scheduling_ddpm.betas_for_alpha_bar
def betas_for_alpha_bar(num_diffusion_timesteps, max_beta=0.999) -> torch.Tensor:
    """
    Create a beta schedule that discretizes the given alpha_t_bar function, which defines 
        the cumulative product of (1-beta) over time from t = [0,1].

    Contains a function alpha_bar that takes an argument t and transforms it to the 
        cumulative product of (1-beta) up to that part of the diffusion process.


    Args:
        num_diffusion_timesteps (`int`): the number of betas to produce.
        max_beta (`float`): 
            the maximum beta to use; use values lower than 1 to prevent singularities.

    Returns:
        betas (`np.ndarray`): the betas used by the scheduler to step the model outputs
    """

    def alpha_bar(time_step):
        return math.cos((time_step + 0.008) / 1.008 * math.pi / 2) ** 2

    betas = []
    for i in range(num_diffusion_timesteps):
        t1 = i / num_diffusion_timesteps
        t2 = (i + 1) / num_diffusion_timesteps
        betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta))
    return torch.tensor(betas, dtype=torch.float32)


class HeunDiscreteScheduler(SchedulerMixin, ConfigMixin):
    """
    Implements Algorithm 2 (Heun steps) from Karras et al. (2022). for discrete beta schedules. 
    Based on the original k-diffusion implementation by Katherine Crowson:
    https://github.com/crowsonkb/k-diffusion/blob/481677d114f6ea445aa009cf5bd7a9cdee909e47/
    k_diffusion/sampling.py#L90

    [`~ConfigMixin`] takes care of storing all config attributes that are passed
    in the scheduler's `__init__` function, such as `num_train_timesteps`. 
    They can be accessed via `scheduler.config.num_train_timesteps`.
    [`SchedulerMixin`] provides general loading and saving functionality via the
    [`SchedulerMixin.save_pretrained`] and [`~SchedulerMixin.from_pretrained`] functions.

    Args:
        num_train_timesteps (`int`):
            number of diffusion steps used to train the model. 
        beta_start (`float`):
            the starting `beta` value of inference. 
        beta_end (`float`):
            the final `beta` value. 
        beta_schedule (`str`):
            the beta schedule, a mapping from a beta range to a sequence of betas for stepping
            the model. Choose from `linear` or `scaled_linear`.
        trained_betas (`np.ndarray`, optional):
            option to pass an array of betas directly to the constructor to bypass 
            `beta_start`, `beta_end` etc.
            options to clip the variance used when adding noise to the denoised sample.
            Choose from `fixed_small`, `fixed_small_log`, `fixed_large`, 
            `fixed_large_log`, `learned` or `learned_range`.
        prediction_type (`str`, default `epsilon`, optional):
            prediction type of the scheduler function, one of 
            `epsilon` (predicting the noise of the diffusion process), 
            `sample` (directly predicting the noisy sample`), or 
            `v_prediction` (see section 2.4 https://imagen.research.google/video/paper.pdf)
    """

    _compatibles = [e.name for e in KarrasDiffusionSchedulers]
    order = 2

    @register_to_config
    def __init__(
        self,
        num_train_timesteps: int = 1000,
        beta_start: float = 0.00085,  # sensible defaults
        beta_end: float = 0.012,
        beta_schedule: str = "linear",
        trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
        prediction_type: str = "epsilon",
        use_karras_sigmas: Optional[bool] = False,
    ):
        if trained_betas is not None:
            self.betas = torch.tensor(trained_betas, dtype=torch.float32)
        elif beta_schedule == "linear":
            self.betas = torch.linspace(
                beta_start, beta_end, num_train_timesteps, dtype=torch.float32
            )
        elif beta_schedule == "scaled_linear":
            # this schedule is very specific to the latent diffusion model.
            self.betas = (
                torch.linspace(
                    beta_start ** 0.5, beta_end ** 0.5,
                    num_train_timesteps, dtype=torch.float32
                ) ** 2
            )
        elif beta_schedule == "squaredcos_cap_v2":
            # Glide cosine schedule
            self.betas = betas_for_alpha_bar(num_train_timesteps)
        else:
            raise NotImplementedError(
                f"{beta_schedule} does is not implemented for {self.__class__}"
            )

        self.alphas = 1.0 - self.betas
        self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)

        # set all values
        self.use_karras_sigmas = use_karras_sigmas
        self.set_timesteps(num_train_timesteps, None, num_train_timesteps)

    def index_for_timestep(self, timestep):
        """Get the first / last index at which self.timesteps == timestep
        """
        assert len(timestep.shape) < 2
        avail_timesteps = self.timesteps.reshape(1, -1).to(timestep.device)
        mask = (avail_timesteps == timestep.reshape(-1, 1))
        assert (mask.sum(dim=1) != 0).all(), f"timestep: {timestep.tolist()}"
        mask = mask.cpu() * torch.arange(mask.shape[1]).reshape(1, -1)

        if self.state_in_first_order:
            return mask.argmax(dim=1).numpy()
        else:
            return mask.argmax(dim=1).numpy() - 1

    def scale_model_input(
        self,
        sample: torch.FloatTensor,
        timestep: Union[float, torch.FloatTensor],
    ) -> torch.FloatTensor:
        """
        Ensures interchangeability with schedulers that need to scale the 
        denoising model input depending on the current timestep.
        Args:
            sample (`torch.FloatTensor`): input sample 
            timestep (`int`, optional): current timestep
        Returns:
            `torch.FloatTensor`: scaled input sample
        """
        if not torch.is_tensor(timestep):
            timestep = torch.tensor(timestep)
        timestep = timestep.to(sample.device).reshape(-1)
        step_index = self.index_for_timestep(timestep)

        sigma = self.sigmas[step_index].reshape(-1, 1, 1, 1).to(sample.device)
        sample = sample / ((sigma ** 2 + 1) ** 0.5)  # sample *= sqrt_alpha_prod
        return sample

    def set_timesteps(
        self,
        num_inference_steps: int,
        device: Union[str, torch.device] = None,
        num_train_timesteps: Optional[int] = None,
    ):
        """
        Sets the timesteps used for the diffusion chain. 
        Supporting function to be run before inference.

        Args:
            num_inference_steps (`int`):
                the number of diffusion steps used when generating samples
                with a pre-trained model.
            device (`str` or `torch.device`, optional):
                the device to which the timesteps should be moved to.
                If `None`, the timesteps are not moved.
        """
        self.num_inference_steps = num_inference_steps
        num_train_timesteps = num_train_timesteps or self.config.num_train_timesteps

        timesteps = np.linspace(
            0, num_train_timesteps - 1, num_inference_steps, dtype=float
        )[::-1].copy()

        # sigma^2 = beta / alpha
        sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5)
        log_sigmas = np.log(sigmas)
        sigmas = np.interp(timesteps, np.arange(0, len(sigmas)), sigmas)

        if self.use_karras_sigmas:
            sigmas = self._convert_to_karras(
                in_sigmas=sigmas, num_inference_steps=self.num_inference_steps
            )
            timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas])

        sigmas = np.concatenate([sigmas, [0.0]]).astype(np.float32)
        sigmas = torch.from_numpy(sigmas).to(device=device)
        self.sigmas = torch.cat(
            [sigmas[:1], sigmas[1:-1].repeat_interleave(2), sigmas[-1:]]
        )

        # standard deviation of the initial noise distribution
        self.init_noise_sigma = self.sigmas.max()

        timesteps = torch.from_numpy(timesteps)
        timesteps = torch.cat([timesteps[:1], timesteps[1:].repeat_interleave(2)])
        if 'mps' in str(device):
            timesteps = timesteps.float()
        self.timesteps = timesteps.to(device)

        # empty dt and derivative
        self.prev_derivative = None
        self.dt = None

    def _sigma_to_t(self, sigma, log_sigmas):
        # get log sigma
        log_sigma = np.log(sigma)

        # get distribution
        dists = log_sigma - log_sigmas[:, np.newaxis]

        # get sigmas range
        low_idx = np.cumsum((dists >= 0), axis=0).argmax(axis=0).clip(
            max=log_sigmas.shape[0] - 2
        )
        high_idx = low_idx + 1

        low = log_sigmas[low_idx]
        high = log_sigmas[high_idx]

        # interpolate sigmas
        w = (low - log_sigma) / (low - high)
        w = np.clip(w, 0, 1)

        # transform interpolation to time range
        t = (1 - w) * low_idx + w * high_idx
        t = t.reshape(sigma.shape)
        return t

    def _convert_to_karras(
        self, in_sigmas: torch.FloatTensor, num_inference_steps
    ) -> torch.FloatTensor:
        """Constructs the noise schedule of Karras et al. (2022)."""

        sigma_min: float = in_sigmas[-1].item()
        sigma_max: float = in_sigmas[0].item()

        rho = 7.0  # 7.0 is the value used in the paper
        ramp = np.linspace(0, 1, num_inference_steps)
        min_inv_rho = sigma_min ** (1 / rho)
        max_inv_rho = sigma_max ** (1 / rho)
        sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho
        return sigmas

    @property
    def state_in_first_order(self):
        return self.dt is None

    def step(
        self,
        model_output: Union[torch.FloatTensor, np.ndarray],
        timestep: Union[float, torch.FloatTensor],
        sample: Union[torch.FloatTensor, np.ndarray],
        return_dict: bool = True,
    ) -> Union[SchedulerOutput, Tuple]:
        """
        Predict the sample at the previous timestep by reversing the SDE. 
        Core function to propagate the diffusion process from the learned 
        model outputs (most often the predicted noise).
        Args:
            model_output (`torch.FloatTensor` or `np.ndarray`): 
                direct output from learned diffusion model. 
            timestep (`int`): 
                current discrete timestep in the diffusion chain. 
            sample (`torch.FloatTensor` or `np.ndarray`):
                current instance of sample being created by diffusion process.
            return_dict (`bool`): 
                option for returning tuple rather than SchedulerOutput class
        Returns:
            [`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`:
            [`~schedulers.scheduling_utils.SchedulerOutput`] if `return_dict` 
                is True, otherwise a `tuple`. When returning a tuple,
                the first element is the sample tensor.
        """
        if not torch.is_tensor(timestep):
            timestep = torch.tensor(timestep)
        timestep = timestep.reshape(-1).to(sample.device)
        step_index = self.index_for_timestep(timestep)

        if self.state_in_first_order:
            sigma = self.sigmas[step_index]
            sigma_next = self.sigmas[step_index + 1]
        else:
            # 2nd order / Heun's method
            sigma = self.sigmas[step_index - 1]
            sigma_next = self.sigmas[step_index]

        sigma = sigma.reshape(-1, 1, 1, 1).to(sample.device)
        sigma_next = sigma_next.reshape(-1, 1, 1, 1).to(sample.device)
        sigma_input = sigma if self.state_in_first_order else sigma_next

        # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise
        if self.config.prediction_type == "epsilon":
            pred_original_sample = sample - sigma_input * model_output
        elif self.config.prediction_type == "v_prediction":
            alpha_prod = 1 / (sigma_input ** 2 + 1)
            pred_original_sample = (
                sample * alpha_prod - model_output * (sigma_input * alpha_prod ** .5)
            )
        elif self.config.prediction_type == "sample":
            raise NotImplementedError("prediction_type not implemented yet: sample")
        else:
            raise ValueError(
                f"prediction_type given as {self.config.prediction_type} "
                "must be one of `epsilon`, or `v_prediction`"
            )

        if self.state_in_first_order:
            # 2. Convert to an ODE derivative for 1st order
            derivative = (sample - pred_original_sample) / sigma
            # 3. delta timestep
            dt = sigma_next - sigma

            # store for 2nd order step
            self.prev_derivative = derivative
            self.dt = dt
            self.sample = sample
        else:
            # 2. 2nd order / Heun's method
            derivative = (sample - pred_original_sample) / sigma_next
            derivative = (self.prev_derivative + derivative) / 2

            # 3. take prev timestep & sample
            dt = self.dt
            sample = self.sample

            # free dt and derivative
            # Note, this puts the scheduler in "first order mode"
            self.prev_derivative = None
            self.dt = None
            self.sample = None

        prev_sample = sample + derivative * dt

        if not return_dict:
            return (prev_sample,)

        return SchedulerOutput(prev_sample=prev_sample)

    def add_noise(
        self,
        original_samples: torch.FloatTensor,
        noise: torch.FloatTensor,
        timesteps: torch.FloatTensor,
    ) -> torch.FloatTensor:

        # Make sure sigmas and timesteps have the same device and dtype as original_samples
        self.sigmas = self.sigmas.to(
            device=original_samples.device, dtype=original_samples.dtype
        )
        self.timesteps = self.timesteps.to(original_samples.device)
        timesteps = timesteps.to(original_samples.device)

        step_indices = self.index_for_timestep(timesteps)

        sigma = self.sigmas[step_indices].flatten()
        while len(sigma.shape) < len(original_samples.shape):
            sigma = sigma.unsqueeze(-1)

        noisy_samples = original_samples + noise * sigma
        return noisy_samples

    def __len__(self):
        return self.config.num_train_timesteps