# Copyright 2023 Katherine Crowson, The HuggingFace Team and hlky. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ### This file has been modified for the purposes of the ConsistencyTTA generation. ### import math from typing import List, Optional, Tuple, Union import numpy as np import torch from .utils.configuration_utils import ConfigMixin, register_to_config from .utils.scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput # Copied from diffusers.schedulers.scheduling_ddpm.betas_for_alpha_bar def betas_for_alpha_bar(num_diffusion_timesteps, max_beta=0.999) -> torch.Tensor: """ Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of (1-beta) over time from t = [0,1]. Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up to that part of the diffusion process. Args: num_diffusion_timesteps (`int`): the number of betas to produce. max_beta (`float`): the maximum beta to use; use values lower than 1 to prevent singularities. Returns: betas (`np.ndarray`): the betas used by the scheduler to step the model outputs """ def alpha_bar(time_step): return math.cos((time_step + 0.008) / 1.008 * math.pi / 2) ** 2 betas = [] for i in range(num_diffusion_timesteps): t1 = i / num_diffusion_timesteps t2 = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta)) return torch.tensor(betas, dtype=torch.float32) class HeunDiscreteScheduler(SchedulerMixin, ConfigMixin): """ Implements Algorithm 2 (Heun steps) from Karras et al. (2022). for discrete beta schedules. Based on the original k-diffusion implementation by Katherine Crowson: https://github.com/crowsonkb/k-diffusion/blob/481677d114f6ea445aa009cf5bd7a9cdee909e47/ k_diffusion/sampling.py#L90 [`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__` function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`. [`SchedulerMixin`] provides general loading and saving functionality via the [`SchedulerMixin.save_pretrained`] and [`~SchedulerMixin.from_pretrained`] functions. Args: num_train_timesteps (`int`): number of diffusion steps used to train the model. beta_start (`float`): the starting `beta` value of inference. beta_end (`float`): the final `beta` value. beta_schedule (`str`): the beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from `linear` or `scaled_linear`. trained_betas (`np.ndarray`, optional): option to pass an array of betas directly to the constructor to bypass `beta_start`, `beta_end` etc. options to clip the variance used when adding noise to the denoised sample. Choose from `fixed_small`, `fixed_small_log`, `fixed_large`, `fixed_large_log`, `learned` or `learned_range`. prediction_type (`str`, default `epsilon`, optional): prediction type of the scheduler function, one of `epsilon` (predicting the noise of the diffusion process), `sample` (directly predicting the noisy sample`), or `v_prediction` (see section 2.4 https://imagen.research.google/video/paper.pdf) """ _compatibles = [e.name for e in KarrasDiffusionSchedulers] order = 2 @register_to_config def __init__( self, num_train_timesteps: int = 1000, beta_start: float = 0.00085, # sensible defaults beta_end: float = 0.012, beta_schedule: str = "linear", trained_betas: Optional[Union[np.ndarray, List[float]]] = None, prediction_type: str = "epsilon", use_karras_sigmas: Optional[bool] = False, ): if trained_betas is not None: self.betas = torch.tensor(trained_betas, dtype=torch.float32) elif beta_schedule == "linear": self.betas = torch.linspace( beta_start, beta_end, num_train_timesteps, dtype=torch.float32 ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. self.betas = ( torch.linspace( beta_start ** 0.5, beta_end ** 0.5, num_train_timesteps, dtype=torch.float32 ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule self.betas = betas_for_alpha_bar(num_train_timesteps) else: raise NotImplementedError( f"{beta_schedule} does is not implemented for {self.__class__}" ) self.alphas = 1.0 - self.betas self.alphas_cumprod = torch.cumprod(self.alphas, dim=0) # set all values self.use_karras_sigmas = use_karras_sigmas self.set_timesteps(num_train_timesteps, None, num_train_timesteps) def index_for_timestep(self, timestep): """Get the first / last index at which self.timesteps == timestep """ assert len(timestep.shape) < 2 avail_timesteps = self.timesteps.reshape(1, -1).to(timestep.device) mask = (avail_timesteps == timestep.reshape(-1, 1)) assert (mask.sum(dim=1) != 0).all(), f"timestep: {timestep.tolist()}" mask = mask.cpu() * torch.arange(mask.shape[1]).reshape(1, -1) if self.state_in_first_order: return mask.argmax(dim=1).numpy() else: return mask.argmax(dim=1).numpy() - 1 def scale_model_input( self, sample: torch.FloatTensor, timestep: Union[float, torch.FloatTensor], ) -> torch.FloatTensor: """ Ensures interchangeability with schedulers that need to scale the denoising model input depending on the current timestep. Args: sample (`torch.FloatTensor`): input sample timestep (`int`, optional): current timestep Returns: `torch.FloatTensor`: scaled input sample """ if not torch.is_tensor(timestep): timestep = torch.tensor(timestep) timestep = timestep.to(sample.device).reshape(-1) step_index = self.index_for_timestep(timestep) sigma = self.sigmas[step_index].reshape(-1, 1, 1, 1).to(sample.device) sample = sample / ((sigma ** 2 + 1) ** 0.5) # sample *= sqrt_alpha_prod return sample def set_timesteps( self, num_inference_steps: int, device: Union[str, torch.device] = None, num_train_timesteps: Optional[int] = None, ): """ Sets the timesteps used for the diffusion chain. Supporting function to be run before inference. Args: num_inference_steps (`int`): the number of diffusion steps used when generating samples with a pre-trained model. device (`str` or `torch.device`, optional): the device to which the timesteps should be moved to. If `None`, the timesteps are not moved. """ self.num_inference_steps = num_inference_steps num_train_timesteps = num_train_timesteps or self.config.num_train_timesteps timesteps = np.linspace( 0, num_train_timesteps - 1, num_inference_steps, dtype=float )[::-1].copy() # sigma^2 = beta / alpha sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5) log_sigmas = np.log(sigmas) sigmas = np.interp(timesteps, np.arange(0, len(sigmas)), sigmas) if self.use_karras_sigmas: sigmas = self._convert_to_karras( in_sigmas=sigmas, num_inference_steps=self.num_inference_steps ) timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas]) sigmas = np.concatenate([sigmas, [0.0]]).astype(np.float32) sigmas = torch.from_numpy(sigmas).to(device=device) self.sigmas = torch.cat( [sigmas[:1], sigmas[1:-1].repeat_interleave(2), sigmas[-1:]] ) # standard deviation of the initial noise distribution self.init_noise_sigma = self.sigmas.max() timesteps = torch.from_numpy(timesteps) timesteps = torch.cat([timesteps[:1], timesteps[1:].repeat_interleave(2)]) if 'mps' in str(device): timesteps = timesteps.float() self.timesteps = timesteps.to(device) # empty dt and derivative self.prev_derivative = None self.dt = None def _sigma_to_t(self, sigma, log_sigmas): # get log sigma log_sigma = np.log(sigma) # get distribution dists = log_sigma - log_sigmas[:, np.newaxis] # get sigmas range low_idx = np.cumsum((dists >= 0), axis=0).argmax(axis=0).clip( max=log_sigmas.shape[0] - 2 ) high_idx = low_idx + 1 low = log_sigmas[low_idx] high = log_sigmas[high_idx] # interpolate sigmas w = (low - log_sigma) / (low - high) w = np.clip(w, 0, 1) # transform interpolation to time range t = (1 - w) * low_idx + w * high_idx t = t.reshape(sigma.shape) return t def _convert_to_karras( self, in_sigmas: torch.FloatTensor, num_inference_steps ) -> torch.FloatTensor: """Constructs the noise schedule of Karras et al. (2022).""" sigma_min: float = in_sigmas[-1].item() sigma_max: float = in_sigmas[0].item() rho = 7.0 # 7.0 is the value used in the paper ramp = np.linspace(0, 1, num_inference_steps) min_inv_rho = sigma_min ** (1 / rho) max_inv_rho = sigma_max ** (1 / rho) sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho return sigmas @property def state_in_first_order(self): return self.dt is None def step( self, model_output: Union[torch.FloatTensor, np.ndarray], timestep: Union[float, torch.FloatTensor], sample: Union[torch.FloatTensor, np.ndarray], return_dict: bool = True, ) -> Union[SchedulerOutput, Tuple]: """ Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion process from the learned model outputs (most often the predicted noise). Args: model_output (`torch.FloatTensor` or `np.ndarray`): direct output from learned diffusion model. timestep (`int`): current discrete timestep in the diffusion chain. sample (`torch.FloatTensor` or `np.ndarray`): current instance of sample being created by diffusion process. return_dict (`bool`): option for returning tuple rather than SchedulerOutput class Returns: [`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`: [`~schedulers.scheduling_utils.SchedulerOutput`] if `return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is the sample tensor. """ if not torch.is_tensor(timestep): timestep = torch.tensor(timestep) timestep = timestep.reshape(-1).to(sample.device) step_index = self.index_for_timestep(timestep) if self.state_in_first_order: sigma = self.sigmas[step_index] sigma_next = self.sigmas[step_index + 1] else: # 2nd order / Heun's method sigma = self.sigmas[step_index - 1] sigma_next = self.sigmas[step_index] sigma = sigma.reshape(-1, 1, 1, 1).to(sample.device) sigma_next = sigma_next.reshape(-1, 1, 1, 1).to(sample.device) sigma_input = sigma if self.state_in_first_order else sigma_next # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": pred_original_sample = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": alpha_prod = 1 / (sigma_input ** 2 + 1) pred_original_sample = ( sample * alpha_prod - model_output * (sigma_input * alpha_prod ** .5) ) elif self.config.prediction_type == "sample": raise NotImplementedError("prediction_type not implemented yet: sample") else: raise ValueError( f"prediction_type given as {self.config.prediction_type} " "must be one of `epsilon`, or `v_prediction`" ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order derivative = (sample - pred_original_sample) / sigma # 3. delta timestep dt = sigma_next - sigma # store for 2nd order step self.prev_derivative = derivative self.dt = dt self.sample = sample else: # 2. 2nd order / Heun's method derivative = (sample - pred_original_sample) / sigma_next derivative = (self.prev_derivative + derivative) / 2 # 3. take prev timestep & sample dt = self.dt sample = self.sample # free dt and derivative # Note, this puts the scheduler in "first order mode" self.prev_derivative = None self.dt = None self.sample = None prev_sample = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=prev_sample) def add_noise( self, original_samples: torch.FloatTensor, noise: torch.FloatTensor, timesteps: torch.FloatTensor, ) -> torch.FloatTensor: # Make sure sigmas and timesteps have the same device and dtype as original_samples self.sigmas = self.sigmas.to( device=original_samples.device, dtype=original_samples.dtype ) self.timesteps = self.timesteps.to(original_samples.device) timesteps = timesteps.to(original_samples.device) step_indices = self.index_for_timestep(timesteps) sigma = self.sigmas[step_indices].flatten() while len(sigma.shape) < len(original_samples.shape): sigma = sigma.unsqueeze(-1) noisy_samples = original_samples + noise * sigma return noisy_samples def __len__(self): return self.config.num_train_timesteps