# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch utilities: Utilities related to PyTorch """ from typing import List, Optional, Tuple, Union from . import logging from .import_utils import is_torch_available, is_torch_version if is_torch_available(): import torch logger = logging.get_logger(__name__) # pylint: disable=invalid-name try: from torch._dynamo import allow_in_graph as maybe_allow_in_graph except (ImportError, ModuleNotFoundError): def maybe_allow_in_graph(cls): return cls def randn_tensor( shape: Union[Tuple, List], generator: Optional[Union[List["torch.Generator"], "torch.Generator"]] = None, device: Optional["torch.device"] = None, dtype: Optional["torch.dtype"] = None, layout: Optional["torch.layout"] = None, ): """This is a helper function that allows to create random tensors on the desired `device` with the desired `dtype`. When passing a list of generators one can seed each batched size individually. If CPU generators are passed the tensor will always be created on CPU. """ # device on which tensor is created defaults to device rand_device = device batch_size = shape[0] layout = layout or torch.strided device = device or torch.device("cpu") if generator is not None: gen_device_type = generator.device.type if not isinstance(generator, list) else generator[0].device.type if gen_device_type != device.type and gen_device_type == "cpu": rand_device = "cpu" if device != "mps": logger.info( f"The passed generator was created on 'cpu' even though a tensor on {device} was expected." f" Tensors will be created on 'cpu' and then moved to {device}. Note that one can probably" f" slighly speed up this function by passing a generator that was created on the {device} device." ) elif gen_device_type != device.type and gen_device_type == "cuda": raise ValueError(f"Cannot generate a {device} tensor from a generator of type {gen_device_type}.") if isinstance(generator, list): shape = (1,) + shape[1:] latents = [ torch.randn(shape, generator=generator[i], device=rand_device, dtype=dtype, layout=layout) for i in range(batch_size) ] latents = torch.cat(latents, dim=0).to(device) else: latents = torch.randn(shape, generator=generator, device=rand_device, dtype=dtype, layout=layout).to(device) return latents def is_compiled_module(module): """Check whether the module was compiled with torch.compile()""" if is_torch_version("<", "2.0.0") or not hasattr(torch, "_dynamo"): return False return isinstance(module, torch._dynamo.eval_frame.OptimizedModule)