from dataclasses import dataclass from typing import Optional, Union import torch import torch.nn.functional as F from torch import nn from ..utils.configuration_utils import ConfigMixin, register_to_config from ..utils.outputs import BaseOutput from .attention import BasicTransformerBlock from .embeddings import TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin @dataclass class PriorTransformerOutput(BaseOutput): """ Args: predicted_image_embedding (`torch.FloatTensor` of shape `(batch_size, embedding_dim)`): The predicted CLIP image embedding conditioned on the CLIP text embedding input. """ predicted_image_embedding: torch.FloatTensor class PriorTransformer(ModelMixin, ConfigMixin): """ The prior transformer from unCLIP is used to predict CLIP image embeddings from CLIP text embeddings. Note that the transformer predicts the image embeddings through a denoising diffusion process. This model inherits from [`ModelMixin`]. Check the superclass documentation for the generic methods the library implements for all the models (such as downloading or saving, etc.) For more details, see the original paper: https://arxiv.org/abs/2204.06125 Parameters: num_attention_heads (`int`, *optional*, defaults to 32): The number of heads to use for multi-head attention. attention_head_dim (`int`, *optional*, defaults to 64): The number of channels in each head. num_layers (`int`, *optional*, defaults to 20): The number of layers of Transformer blocks to use. embedding_dim (`int`, *optional*, defaults to 768): The dimension of the CLIP embeddings. Note that CLIP image embeddings and text embeddings are both the same dimension. num_embeddings (`int`, *optional*, defaults to 77): The max number of clip embeddings allowed. I.e. the length of the prompt after it has been tokenized. additional_embeddings (`int`, *optional*, defaults to 4): The number of additional tokens appended to the projected hidden_states. The actual length of the used hidden_states is `num_embeddings + additional_embeddings`. dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. """ @register_to_config def __init__( self, num_attention_heads: int = 32, attention_head_dim: int = 64, num_layers: int = 20, embedding_dim: int = 768, num_embeddings=77, additional_embeddings=4, dropout: float = 0.0, ): super().__init__() self.num_attention_heads = num_attention_heads self.attention_head_dim = attention_head_dim inner_dim = num_attention_heads * attention_head_dim self.additional_embeddings = additional_embeddings self.time_proj = Timesteps(inner_dim, True, 0) self.time_embedding = TimestepEmbedding(inner_dim, inner_dim) self.proj_in = nn.Linear(embedding_dim, inner_dim) self.embedding_proj = nn.Linear(embedding_dim, inner_dim) self.encoder_hidden_states_proj = nn.Linear(embedding_dim, inner_dim) self.positional_embedding = nn.Parameter(torch.zeros(1, num_embeddings + additional_embeddings, inner_dim)) self.prd_embedding = nn.Parameter(torch.zeros(1, 1, inner_dim)) self.transformer_blocks = nn.ModuleList( [ BasicTransformerBlock( inner_dim, num_attention_heads, attention_head_dim, dropout=dropout, activation_fn="gelu", attention_bias=True, ) for d in range(num_layers) ] ) self.norm_out = nn.LayerNorm(inner_dim) self.proj_to_clip_embeddings = nn.Linear(inner_dim, embedding_dim) causal_attention_mask = torch.full( [num_embeddings + additional_embeddings, num_embeddings + additional_embeddings], -10000.0 ) causal_attention_mask.triu_(1) causal_attention_mask = causal_attention_mask[None, ...] self.register_buffer("causal_attention_mask", causal_attention_mask, persistent=False) self.clip_mean = nn.Parameter(torch.zeros(1, embedding_dim)) self.clip_std = nn.Parameter(torch.zeros(1, embedding_dim)) def forward( self, hidden_states, timestep: Union[torch.Tensor, float, int], proj_embedding: torch.FloatTensor, encoder_hidden_states: torch.FloatTensor, attention_mask: Optional[torch.BoolTensor] = None, return_dict: bool = True, ): """ Args: hidden_states (`torch.FloatTensor` of shape `(batch_size, embedding_dim)`): x_t, the currently predicted image embeddings. timestep (`torch.long`): Current denoising step. proj_embedding (`torch.FloatTensor` of shape `(batch_size, embedding_dim)`): Projected embedding vector the denoising process is conditioned on. encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, num_embeddings, embedding_dim)`): Hidden states of the text embeddings the denoising process is conditioned on. attention_mask (`torch.BoolTensor` of shape `(batch_size, num_embeddings)`): Text mask for the text embeddings. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`models.prior_transformer.PriorTransformerOutput`] instead of a plain tuple. Returns: [`~models.prior_transformer.PriorTransformerOutput`] or `tuple`: [`~models.prior_transformer.PriorTransformerOutput`] if `return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is the sample tensor. """ batch_size = hidden_states.shape[0] timesteps = timestep if not torch.is_tensor(timesteps): timesteps = torch.tensor([timesteps], dtype=torch.long, device=hidden_states.device) elif torch.is_tensor(timesteps) and len(timesteps.shape) == 0: timesteps = timesteps[None].to(hidden_states.device) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML timesteps = timesteps * torch.ones(batch_size, dtype=timesteps.dtype, device=timesteps.device) timesteps_projected = self.time_proj(timesteps) # timesteps does not contain any weights and will always return f32 tensors # but time_embedding might be fp16, so we need to cast here. timesteps_projected = timesteps_projected.to(dtype=self.dtype) time_embeddings = self.time_embedding(timesteps_projected) proj_embeddings = self.embedding_proj(proj_embedding) encoder_hidden_states = self.encoder_hidden_states_proj(encoder_hidden_states) hidden_states = self.proj_in(hidden_states) prd_embedding = self.prd_embedding.to(hidden_states.dtype).expand(batch_size, -1, -1) positional_embeddings = self.positional_embedding.to(hidden_states.dtype) hidden_states = torch.cat( [ encoder_hidden_states, proj_embeddings[:, None, :], time_embeddings[:, None, :], hidden_states[:, None, :], prd_embedding, ], dim=1, ) hidden_states = hidden_states + positional_embeddings if attention_mask is not None: attention_mask = (1 - attention_mask.to(hidden_states.dtype)) * -10000.0 attention_mask = F.pad(attention_mask, (0, self.additional_embeddings), value=0.0) attention_mask = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype) attention_mask = attention_mask.repeat_interleave(self.config.num_attention_heads, dim=0) for block in self.transformer_blocks: hidden_states = block(hidden_states, attention_mask=attention_mask) hidden_states = self.norm_out(hidden_states) hidden_states = hidden_states[:, -1] predicted_image_embedding = self.proj_to_clip_embeddings(hidden_states) if not return_dict: return (predicted_image_embedding,) return PriorTransformerOutput(predicted_image_embedding=predicted_image_embedding) def post_process_latents(self, prior_latents): prior_latents = (prior_latents * self.clip_std) + self.clip_mean return prior_latents