Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from pytube import YouTube
|
2 |
+
from pydub import AudioSegment
|
3 |
+
import whisper
|
4 |
+
import webrtcvad
|
5 |
+
import gradio as gr
|
6 |
+
import os
|
7 |
+
|
8 |
+
def download_audio(youtube_url, download_path='downloads', audio_filename='audio.mp3'):
|
9 |
+
yt = YouTube(youtube_url)
|
10 |
+
audio_stream = yt.streams.filter(only_audio=True).first()
|
11 |
+
if not os.path.exists(download_path):
|
12 |
+
os.makedirs(download_path)
|
13 |
+
out_file = audio_stream.download(output_path=download_path, filename=audio_filename)
|
14 |
+
return out_file
|
15 |
+
|
16 |
+
def convert_to_wav(mp3_path, wav_path='downloads/audio.wav'):
|
17 |
+
audio = AudioSegment.from_file(mp3_path)
|
18 |
+
audio.export(wav_path, format='wav')
|
19 |
+
return wav_path
|
20 |
+
|
21 |
+
def transcribe_audio(audio_path):
|
22 |
+
model = whisper.load_model("base")
|
23 |
+
result = model.transcribe(audio_path)
|
24 |
+
return result["segments"]
|
25 |
+
|
26 |
+
def vad_audio(audio_path, aggressiveness=3):
|
27 |
+
audio = AudioSegment.from_wav(audio_path)
|
28 |
+
audio = audio.set_frame_rate(16000).set_channels(1)
|
29 |
+
vad = webrtcvad.Vad(aggressiveness)
|
30 |
+
|
31 |
+
def frame_generator(audio_segment, frame_duration_ms=10):
|
32 |
+
n = int(audio_segment.frame_rate * (frame_duration_ms / 1000.0) * 2) # Calculate frame size
|
33 |
+
offset = 0
|
34 |
+
while offset + n < len(audio_segment.raw_data):
|
35 |
+
yield audio_segment.raw_data[offset:offset + n]
|
36 |
+
offset += n
|
37 |
+
|
38 |
+
frames = frame_generator(audio)
|
39 |
+
segments = []
|
40 |
+
chunk_start = None
|
41 |
+
timestamp = 0.0
|
42 |
+
|
43 |
+
for frame in frames:
|
44 |
+
is_speech = vad.is_speech(frame, sample_rate=16000)
|
45 |
+
if is_speech:
|
46 |
+
if chunk_start is None:
|
47 |
+
chunk_start = timestamp
|
48 |
+
else:
|
49 |
+
if chunk_start is not None:
|
50 |
+
segments.append((chunk_start, timestamp))
|
51 |
+
chunk_start = None
|
52 |
+
timestamp += 0.01
|
53 |
+
|
54 |
+
if chunk_start is not None:
|
55 |
+
segments.append((chunk_start, timestamp))
|
56 |
+
|
57 |
+
return segments
|
58 |
+
|
59 |
+
def semantic_chunking(transcription_segments, vad_segments, max_duration=15.0):
|
60 |
+
chunks = []
|
61 |
+
chunk_id = 0
|
62 |
+
for i, (start, end) in enumerate(vad_segments):
|
63 |
+
segment_texts = [seg['text'] for seg in transcription_segments if seg['start'] >= start and seg['end'] <= end]
|
64 |
+
segment_text = ' '.join(segment_texts)
|
65 |
+
duration = end - start
|
66 |
+
if duration <= max_duration:
|
67 |
+
chunks.append({
|
68 |
+
"chunk_id": chunk_id,
|
69 |
+
"chunk_length": duration,
|
70 |
+
"text": segment_text,
|
71 |
+
"start_time": start,
|
72 |
+
"end_time": end,
|
73 |
+
})
|
74 |
+
chunk_id += 1
|
75 |
+
return chunks
|
76 |
+
|
77 |
+
def process_video(youtube_url):
|
78 |
+
mp3_path = download_audio(youtube_url)
|
79 |
+
audio_path = convert_to_wav(mp3_path)
|
80 |
+
transcription_segments = transcribe_audio(audio_path)
|
81 |
+
vad_segments = vad_audio(audio_path)
|
82 |
+
chunks = semantic_chunking(transcription_segments, vad_segments)
|
83 |
+
return chunks
|
84 |
+
|
85 |
+
iface = gr.Interface(fn=process_video, inputs="text", outputs="json", title="Semantic Chunking of YouTube Video", description="Enter a YouTube URL to get semantic chunks of the video.")
|
86 |
+
iface.launch()
|