Update app.py
Browse filesAdd Counting, PostingList, and InvertedIndex
app.py
CHANGED
@@ -7,6 +7,140 @@ import gradio as gr
|
|
7 |
from typing import TypedDict
|
8 |
from dataclasses import dataclass
|
9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
sciq = load_sciq()
|
11 |
counting = run_counting(documents=iter(sciq.corpus), ndocs=len(sciq.corpus))
|
12 |
|
|
|
7 |
from typing import TypedDict
|
8 |
from dataclasses import dataclass
|
9 |
|
10 |
+
from dataclasses import dataclass
|
11 |
+
import pickle
|
12 |
+
import os
|
13 |
+
from typing import Iterable, Callable, List, Dict, Optional, Type, TypeVar
|
14 |
+
from nlp4web_codebase.ir.data_loaders.dm import Document
|
15 |
+
from collections import Counter
|
16 |
+
import tqdm
|
17 |
+
import re
|
18 |
+
import nltk
|
19 |
+
nltk.download("stopwords", quiet=True)
|
20 |
+
from nltk.corpus import stopwords as nltk_stopwords
|
21 |
+
|
22 |
+
LANGUAGE = "english"
|
23 |
+
word_splitter = re.compile(r"(?u)\b\w\w+\b").findall
|
24 |
+
stopwords = set(nltk_stopwords.words(LANGUAGE))
|
25 |
+
|
26 |
+
|
27 |
+
def word_splitting(text: str) -> List[str]:
|
28 |
+
return word_splitter(text.lower())
|
29 |
+
|
30 |
+
def lemmatization(words: List[str]) -> List[str]:
|
31 |
+
return words # We ignore lemmatization here for simplicity
|
32 |
+
|
33 |
+
def simple_tokenize(text: str) -> List[str]:
|
34 |
+
words = word_splitting(text)
|
35 |
+
tokenized = list(filter(lambda w: w not in stopwords, words))
|
36 |
+
tokenized = lemmatization(tokenized)
|
37 |
+
return tokenized
|
38 |
+
|
39 |
+
T = TypeVar("T", bound="InvertedIndex")
|
40 |
+
|
41 |
+
@dataclass
|
42 |
+
class PostingList:
|
43 |
+
term: str # The term
|
44 |
+
docid_postings: List[int] # docid_postings[i] means the docid (int) of the i-th associated posting
|
45 |
+
tweight_postings: List[float] # tweight_postings[i] means the term weight (float) of the i-th associated posting
|
46 |
+
|
47 |
+
|
48 |
+
@dataclass
|
49 |
+
class InvertedIndex:
|
50 |
+
posting_lists: List[PostingList] # docid -> posting_list
|
51 |
+
vocab: Dict[str, int]
|
52 |
+
cid2docid: Dict[str, int] # collection_id -> docid
|
53 |
+
collection_ids: List[str] # docid -> collection_id
|
54 |
+
doc_texts: Optional[List[str]] = None # docid -> document text
|
55 |
+
|
56 |
+
def save(self, output_dir: str) -> None:
|
57 |
+
os.makedirs(output_dir, exist_ok=True)
|
58 |
+
with open(os.path.join(output_dir, "index.pkl"), "wb") as f:
|
59 |
+
pickle.dump(self, f)
|
60 |
+
|
61 |
+
@classmethod
|
62 |
+
def from_saved(cls: Type[T], saved_dir: str) -> T:
|
63 |
+
index = cls(
|
64 |
+
posting_lists=[], vocab={}, cid2docid={}, collection_ids=[], doc_texts=None
|
65 |
+
)
|
66 |
+
with open(os.path.join(saved_dir, "index.pkl"), "rb") as f:
|
67 |
+
index = pickle.load(f)
|
68 |
+
return index
|
69 |
+
|
70 |
+
|
71 |
+
# The output of the counting function:
|
72 |
+
@dataclass
|
73 |
+
class Counting:
|
74 |
+
posting_lists: List[PostingList]
|
75 |
+
vocab: Dict[str, int]
|
76 |
+
cid2docid: Dict[str, int]
|
77 |
+
collection_ids: List[str]
|
78 |
+
dfs: List[int] # tid -> df
|
79 |
+
dls: List[int] # docid -> doc length
|
80 |
+
avgdl: float
|
81 |
+
nterms: int
|
82 |
+
doc_texts: Optional[List[str]] = None
|
83 |
+
|
84 |
+
def run_counting(
|
85 |
+
documents: Iterable[Document],
|
86 |
+
tokenize_fn: Callable[[str], List[str]] = simple_tokenize,
|
87 |
+
store_raw: bool = True, # store the document text in doc_texts
|
88 |
+
ndocs: Optional[int] = None,
|
89 |
+
show_progress_bar: bool = True,
|
90 |
+
) -> Counting:
|
91 |
+
"""Counting TFs, DFs, doc_lengths, etc."""
|
92 |
+
posting_lists: List[PostingList] = []
|
93 |
+
vocab: Dict[str, int] = {}
|
94 |
+
cid2docid: Dict[str, int] = {}
|
95 |
+
collection_ids: List[str] = []
|
96 |
+
dfs: List[int] = [] # tid -> df
|
97 |
+
dls: List[int] = [] # docid -> doc length
|
98 |
+
nterms: int = 0
|
99 |
+
doc_texts: Optional[List[str]] = []
|
100 |
+
for doc in tqdm.tqdm(
|
101 |
+
documents,
|
102 |
+
desc="Counting",
|
103 |
+
total=ndocs,
|
104 |
+
disable=not show_progress_bar,
|
105 |
+
):
|
106 |
+
if doc.collection_id in cid2docid:
|
107 |
+
continue
|
108 |
+
collection_ids.append(doc.collection_id)
|
109 |
+
docid = cid2docid.setdefault(doc.collection_id, len(cid2docid))
|
110 |
+
toks = tokenize_fn(doc.text)
|
111 |
+
tok2tf = Counter(toks)
|
112 |
+
dls.append(sum(tok2tf.values()))
|
113 |
+
for tok, tf in tok2tf.items():
|
114 |
+
nterms += tf
|
115 |
+
tid = vocab.get(tok, None)
|
116 |
+
if tid is None:
|
117 |
+
posting_lists.append(
|
118 |
+
PostingList(term=tok, docid_postings=[], tweight_postings=[])
|
119 |
+
)
|
120 |
+
tid = vocab.setdefault(tok, len(vocab))
|
121 |
+
posting_lists[tid].docid_postings.append(docid)
|
122 |
+
posting_lists[tid].tweight_postings.append(tf)
|
123 |
+
if tid < len(dfs):
|
124 |
+
dfs[tid] += 1
|
125 |
+
else:
|
126 |
+
dfs.append(0)
|
127 |
+
if store_raw:
|
128 |
+
doc_texts.append(doc.text)
|
129 |
+
else:
|
130 |
+
doc_texts = None
|
131 |
+
return Counting(
|
132 |
+
posting_lists=posting_lists,
|
133 |
+
vocab=vocab,
|
134 |
+
cid2docid=cid2docid,
|
135 |
+
collection_ids=collection_ids,
|
136 |
+
dfs=dfs,
|
137 |
+
dls=dls,
|
138 |
+
avgdl=sum(dls) / len(dls),
|
139 |
+
nterms=nterms,
|
140 |
+
doc_texts=doc_texts,
|
141 |
+
)
|
142 |
+
|
143 |
+
from nlp4web_codebase.ir.data_loaders.sciq import load_sciq
|
144 |
sciq = load_sciq()
|
145 |
counting = run_counting(documents=iter(sciq.corpus), ndocs=len(sciq.corpus))
|
146 |
|