from __future__ import annotations from nlp4web_codebase.ir.data_loaders.dm import Document from nlp4web_codebase.ir.models import BaseRetriever from scipy.sparse._csc import csc_matrix import numpy as np import gradio as gr from typing import TypedDict, Type from dataclasses import dataclass from dataclasses import dataclass import pickle import os from typing import Iterable, Callable, List, Dict, Optional, Type, TypeVar from abc import abstractmethod from collections import Counter import tqdm import re import nltk nltk.download("stopwords", quiet=True) from nltk.corpus import stopwords as nltk_stopwords LANGUAGE = "english" word_splitter = re.compile(r"(?u)\b\w\w+\b").findall stopwords = set(nltk_stopwords.words(LANGUAGE)) def word_splitting(text: str) -> List[str]: return word_splitter(text.lower()) def lemmatization(words: List[str]) -> List[str]: return words # We ignore lemmatization here for simplicity def simple_tokenize(text: str) -> List[str]: words = word_splitting(text) tokenized = list(filter(lambda w: w not in stopwords, words)) tokenized = lemmatization(tokenized) return tokenized T = TypeVar("T", bound="InvertedIndex") @dataclass class PostingList: term: str # The term docid_postings: List[int] # docid_postings[i] means the docid (int) of the i-th associated posting tweight_postings: List[float] # tweight_postings[i] means the term weight (float) of the i-th associated posting @dataclass class InvertedIndex: posting_lists: List[PostingList] # docid -> posting_list vocab: Dict[str, int] cid2docid: Dict[str, int] # collection_id -> docid collection_ids: List[str] # docid -> collection_id doc_texts: Optional[List[str]] = None # docid -> document text def save(self, output_dir: str) -> None: os.makedirs(output_dir, exist_ok=True) with open(os.path.join(output_dir, "index.pkl"), "wb") as f: pickle.dump(self, f) @classmethod def from_saved(cls: Type[T], saved_dir: str) -> T: index = cls( posting_lists=[], vocab={}, cid2docid={}, collection_ids=[], doc_texts=None ) with open(os.path.join(saved_dir, "index.pkl"), "rb") as f: index = pickle.load(f) return index # The output of the counting function: @dataclass class Counting: posting_lists: List[PostingList] vocab: Dict[str, int] cid2docid: Dict[str, int] collection_ids: List[str] dfs: List[int] # tid -> df dls: List[int] # docid -> doc length avgdl: float nterms: int doc_texts: Optional[List[str]] = None def run_counting( documents: Iterable[Document], tokenize_fn: Callable[[str], List[str]] = simple_tokenize, store_raw: bool = True, # store the document text in doc_texts ndocs: Optional[int] = None, show_progress_bar: bool = True, ) -> Counting: """Counting TFs, DFs, doc_lengths, etc.""" posting_lists: List[PostingList] = [] vocab: Dict[str, int] = {} cid2docid: Dict[str, int] = {} collection_ids: List[str] = [] dfs: List[int] = [] # tid -> df dls: List[int] = [] # docid -> doc length nterms: int = 0 doc_texts: Optional[List[str]] = [] for doc in tqdm.tqdm( documents, desc="Counting", total=ndocs, disable=not show_progress_bar, ): if doc.collection_id in cid2docid: continue collection_ids.append(doc.collection_id) docid = cid2docid.setdefault(doc.collection_id, len(cid2docid)) toks = tokenize_fn(doc.text) tok2tf = Counter(toks) dls.append(sum(tok2tf.values())) for tok, tf in tok2tf.items(): nterms += tf tid = vocab.get(tok, None) if tid is None: posting_lists.append( PostingList(term=tok, docid_postings=[], tweight_postings=[]) ) tid = vocab.setdefault(tok, len(vocab)) posting_lists[tid].docid_postings.append(docid) posting_lists[tid].tweight_postings.append(tf) if tid < len(dfs): dfs[tid] += 1 else: dfs.append(0) if store_raw: doc_texts.append(doc.text) else: doc_texts = None return Counting( posting_lists=posting_lists, vocab=vocab, cid2docid=cid2docid, collection_ids=collection_ids, dfs=dfs, dls=dls, avgdl=sum(dls) / len(dls), nterms=nterms, doc_texts=doc_texts, ) from nlp4web_codebase.ir.data_loaders.sciq import load_sciq sciq = load_sciq() counting = run_counting(documents=iter(sciq.corpus), ndocs=len(sciq.corpus)) # CSC @dataclass class CSCInvertedIndex: posting_lists_matrix: csc_matrix # docid -> posting_list vocab: Dict[str, int] cid2docid: Dict[str, int] # collection_id -> docid collection_ids: List[str] # docid -> collection_id doc_texts: Optional[List[str]] = None # docid -> document text def save(self, output_dir: str) -> None: os.makedirs(output_dir, exist_ok=True) with open(os.path.join(output_dir, "index.pkl"), "wb") as f: pickle.dump(self, f) @classmethod def from_saved(cls: Type[T], saved_dir: str) -> T: index = cls( posting_lists_matrix=None, vocab={}, cid2docid={}, collection_ids=[], doc_texts=None ) with open(os.path.join(saved_dir, "index.pkl"), "rb") as f: index = pickle.load(f) return index @dataclass class CSCBM25Index(CSCInvertedIndex): @staticmethod def tokenize(text: str) -> List[str]: return simple_tokenize(text) @staticmethod def cache_term_weights( posting_lists: List[PostingList], total_docs: int, avgdl: float, dfs: List[int], dls: List[int], k1: float, b: float, ) -> csc_matrix: """Compute term weights and caching""" data = [] indices = [] N = total_docs indptr = [0] for tid, posting_list in enumerate(posting_lists): idf = CSCBM25Index.calc_idf(df=dfs[tid], N=N) # Iterate through docid_postings and tweight_postings simultaneously for docid, tf in zip(posting_list.docid_postings, posting_list.tweight_postings): dl = dls[docid] regularized_tf = CSCBM25Index.calc_regularized_tf( tf=tf, dl=dl, avgdl=avgdl, k1=k1, b=b ) bm25_weight = regularized_tf * idf if bm25_weight != 0: # Update the tweight_postings directly posting_list.tweight_postings[posting_list.docid_postings.index(docid)] = bm25_weight data.append(bm25_weight) indices.append(docid) indptr.append(len(data)) shape = (N, len(posting_lists)) data = np.array(data, np.float32) indices = np.array(indices) indptr = np.array(indptr) output_matrix = csc_matrix((data, indices, indptr), shape=shape) return output_matrix @staticmethod def calc_regularized_tf( tf: int, dl: float, avgdl: float, k1: float, b: float ) -> float: return tf / (tf + k1 * (1 - b + b * dl / avgdl)) @staticmethod def calc_idf(df: int, N: int): return math.log(1 + (N - df + 0.5) / (df + 0.5)) @classmethod def build_from_documents( cls: Type[CSCBM25Index], documents: Iterable[Document], store_raw: bool = True, output_dir: Optional[str] = None, ndocs: Optional[int] = None, show_progress_bar: bool = True, k1: float = 0.9, b: float = 0.4, ) -> CSCBM25Index: # Counting TFs, DFs, doc_lengths, etc.: counting = run_counting( documents=documents, tokenize_fn=CSCBM25Index.tokenize, store_raw=store_raw, ndocs=ndocs, show_progress_bar=show_progress_bar, ) # Compute term weights and caching: posting_lists = counting.posting_lists total_docs = len(counting.cid2docid) posting_lists_matrix = CSCBM25Index.cache_term_weights( posting_lists=posting_lists, total_docs=total_docs, avgdl=counting.avgdl, dfs=counting.dfs, dls=counting.dls, k1=k1, b=b, ) # Assembly and save: index = CSCBM25Index( posting_lists_matrix=posting_lists_matrix, vocab=counting.vocab, cid2docid=counting.cid2docid, collection_ids=counting.collection_ids, doc_texts=counting.doc_texts, ) return index class BaseCSCInvertedIndexRetriever(BaseRetriever): @property @abstractmethod def index_class(self) -> Type[CSCInvertedIndex]: pass def __init__(self, index_dir: str) -> None: self.index = self.index_class.from_saved(index_dir) def get_term_weights(self, query: str, cid: str) -> Dict[str, float]: toks = self.index.tokenize(query) target_docid = self.index.cid2docid[cid] term_weights: Dict[str, float] = {} for tok in toks: if tok not in self.index.vocab: continue tid = self.index.vocab[tok] posting_list = self.index.posting_lists_matrix.getcol(tid) for docid, tweight in zip( posting_list.indices, posting_list.data ): if docid == target_docid: term_weights[tok] = tweight break return term_weights def score(self, query: str, cid: str) -> float: return sum(self.get_term_weights(query=query, cid=cid).values()) def retrieve(self, query: str, topk: int = 10) -> Dict[str, float]: ranking:Dict[str, float] = {} toks = self.index.tokenize(query) docid2score: Dict(int, float) = {} for tok in toks: if tok not in self.index.vocab: continue tid = self.index.vocab[tok] posting_list = self.index.posting_lists_matrix.getcol(tid) for docid, tweight in zip( posting_list.indices, posting_list.data ): docid2score[docid] = docid2score.get(docid, 0) + tweight ranking = {self.index.collection_ids[docid]: score for docid, score in docid2score.items()} ranking = sorted(ranking.items(), key=lambda x: x[1], reverse=True)[:topk] return ranking class CSCBM25Retriever(BaseCSCInvertedIndexRetriever): @property def index_class(self) -> Type[CSCBM25Index]: return CSCBM25Index class Hit(TypedDict): cid: str score: float text: str demo: Optional[gr.Interface] = None # Assign your gradio demo to this variable return_type = List[Hit] def search(query: str) -> List[Hit]: csc_bm25_retriever = CSCBM25Retriever(index_dir="output/csc_bm25_index") top_docs = csc_bm25_retriever.retrieve(query) dict_docs = {doc.collection_id: doc.text for doc in sciq.corpus} hits = [Hit(cid=cid, score=score, text=dict_docs[cid]) for cid, score in top_docs] return hits demo = gr.Interface( fn=search, inputs="textbox", outputs="textbox", live=True, title="BM25 search engine index on SciQ", description="Enter your query to see the search results.", ) demo.launch()