File size: 10,725 Bytes
a089b0d
 
 
 
94c0fea
ca3af14
83c336a
42c5a14
853735a
a089b0d
 
 
83c336a
a089b0d
 
3ff5801
ca3af14
a089b0d
d2ed71e
 
 
 
 
a089b0d
 
 
aad0805
 
 
 
 
 
 
 
a089b0d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d2ed71e
 
 
aad0805
 
150662b
aad0805
 
 
 
150662b
aad0805
 
 
d2ed71e
 
 
 
aad0805
 
 
 
 
 
 
 
 
 
 
 
 
d2ed71e
 
 
 
 
aad0805
3ff5801
aad0805
 
 
 
e7b03fa
 
 
 
 
aad0805
3ff5801
aad0805
 
 
 
 
 
 
 
 
 
 
 
 
d2ed71e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a089b0d
 
 
 
83c336a
4e4d72e
 
42c5a14
94c0fea
c6b142e
94c0fea
ca3af14
c6b142e
 
 
 
 
 
 
 
 
 
 
 
 
 
83c336a
 
94c0fea
 
 
ca3af14
 
83c336a
3ff5801
4e4d72e
 
 
3ff5801
4e4d72e
 
3ff5801
4e4d72e
 
 
 
 
 
 
 
 
3ff5801
4e4d72e
3ff5801
4e4d72e
 
 
 
 
 
3ff5801
83c336a
3ff5801
83c336a
 
4e4d72e
853735a
a089b0d
 
853735a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
import pandas as pd
import streamlit as st
import matplotlib.pyplot as plt
import numpy as np
from second import double_main
from multiple import multiple_main
from weekly import generate_weekly_report
from pre import preprocess_uploaded_file, add_app_description
from multi_env_compare import multi_env_compare_main 



def single_main(uploaded_file):     

    if uploaded_file is not None:
       # Process the file with header
        data = preprocess_uploaded_file(uploaded_file)

       # Display debugging information
        st.write("Data shape:", data.shape)
        st.write("Unique functional areas:", data['Functional area'].nunique())
        st.write("Sample of data:", data.head())

       # Display scenarios with status "failed" grouped by functional area
        failed_scenarios = data[data['Status'] == 'FAILED']
        passed_scenarios = data[data['Status'] == 'PASSED']

        # Display total count of failures
        fail_count = len(failed_scenarios)
        st.markdown(f"Failing scenarios Count: {fail_count}")
        # Display total count of Passing
        pass_count = len(passed_scenarios)
        st.markdown(f"Passing scenarios Count: {pass_count}")

         # Use radio buttons for selecting status
        selected_status = st.radio("Select a status", ['Failed', 'Passed'])

        # Determine which scenarios to display based on selected status
        if selected_status == 'Failed':
            unique_areas = np.append(failed_scenarios['Functional area'].unique(), "All")
            selected_scenarios = failed_scenarios
        elif selected_status == 'Passed':
            unique_areas = np.append(passed_scenarios['Functional area'].unique(), "All")
            selected_scenarios = passed_scenarios
        else:  
            selected_scenarios = None
        
        if selected_scenarios is not None:
            # st.write(f"Scenarios with status '{selected_status}' grouped by functional area:")
            st.markdown(f"### Scenarios with status '{selected_status}' grouped by functional area:")
            
            # Display count of unique functional areas
            # st.write(f"Number of unique functional areas: {len(unique_areas) - 1}")  # Subtract 1 for "All"
            
            # Select a range of functional areas to filter scenarios
            selected_functional_areas = st.multiselect("Select functional areas", unique_areas, ["All"])
           
            if "All" in selected_functional_areas:
                filtered_scenarios = selected_scenarios
            else:
                filtered_scenarios = selected_scenarios[selected_scenarios['Functional area'].isin(selected_functional_areas)]
            
            if not selected_functional_areas:  # Check if the list is empty
                st.error("Please select at least one functional area.")
            else:
                # Display count of filtered scenarios
                st.write(f"Number of filtered scenarios: {len(filtered_scenarios)}")
                
                # Calculate the average time spent for each functional area
                average_time_spent_seconds = filtered_scenarios.groupby('Functional area')['Time spent'].mean().reset_index()

                # Convert average time spent from seconds to minutes and seconds format
                average_time_spent_seconds['Time spent'] = pd.to_datetime(average_time_spent_seconds['Time spent'], unit='s').dt.strftime('%M:%S')

                # Group by functional area and get the start datetime for sorting
                start_datetime_group = filtered_scenarios.groupby('Functional area')['Start datetime'].min().reset_index()

                # Merge average_time_spent_seconds and start_datetime_group
                average_time_spent_seconds = average_time_spent_seconds.merge(start_datetime_group, on='Functional area')

                # Filter scenarios based on selected functional area
                if selected_status == 'Failed':
                    # Check if Failed Step column exists
                    if 'Failed Step' in filtered_scenarios.columns:
                        grouped_filtered_scenarios = filtered_scenarios.groupby('Functional area')[['Scenario Name', 'Error Message', 'Failed Step', 'Time spent(m:s)']].apply(lambda x: x.reset_index(drop=True))
                    else:
                        grouped_filtered_scenarios = filtered_scenarios.groupby('Functional area')[['Scenario Name', 'Error Message', 'Time spent(m:s)']].apply(lambda x: x.reset_index(drop=True))
                elif selected_status == 'Passed':
                    grouped_filtered_scenarios = filtered_scenarios.groupby('Functional area')[['Scenario Name', 'Time spent(m:s)']].apply(lambda x: x.reset_index(drop=True))
                else:  
                    grouped_filtered_scenarios = None

                grouped_filtered_scenarios.reset_index(inplace=True)
                
                # Only drop 'level_1' if it exists in the DataFrame
                if 'level_1' in grouped_filtered_scenarios.columns:
                    grouped_filtered_scenarios.drop(columns=['level_1'], inplace=True)
                
                grouped_filtered_scenarios.index = grouped_filtered_scenarios.index + 1
                st.dataframe(grouped_filtered_scenarios)  
                # Sort the average time spent table by start datetime
                average_time_spent_seconds = average_time_spent_seconds.sort_values(by='Start datetime')

               # Display average time spent on each functional area in a table
                st.markdown("### Average Time Spent on Each Functional Area")
                average_time_spent_seconds.index = average_time_spent_seconds.index + 1
                st.dataframe(average_time_spent_seconds)

                # Check if selected_status is 'Failed' and grouped_filtered_scenarios length is less than or equal to 400
                if selected_status != 'Passed' and len(grouped_filtered_scenarios) <= 400:
                    # Create and display bar graph of errors by functional area
                    st.write(f"### Bar graph showing number of '{selected_status}' scenarios in each functional area:")
                    error_counts = grouped_filtered_scenarios['Functional area'].value_counts()
                    
                    # Only create the graph if there are errors to display
                    if not error_counts.empty:
                        plt.figure(figsize=(10, 6))
                        plt.bar(error_counts.index, error_counts.values)
                        plt.xlabel('Functional Area')
                        plt.ylabel('Number of Failures')
                        plt.title(f"Number of '{selected_status}' scenarios by Functional Area")
                        plt.xticks(rotation=45, ha='right')

                        # Set y-axis limits and ticks for consistent interval of 1
                        y_max = max(error_counts.values) + 1
                        plt.ylim(0, y_max)
                        plt.yticks(range(0, y_max, 1))

                        # Display individual numbers on y-axis
                        for i, count in enumerate(error_counts.values):
                            plt.text(i, count, str(count), ha='center', va='bottom')

                        plt.tight_layout()  # Add this line to adjust layout
                        st.pyplot(plt)
                    else:
                        st.info(f"No '{selected_status}' scenarios found to display in the graph.")
        else:
            st.write("### No scenarios with status 'failed' found.")  
    pass



def main():
    add_app_description()

    # Initialize session state for mode if it doesn't exist
    if "mode" not in st.session_state:
        st.session_state["mode"] = "multi"
    
    # Initialize session state for the selectbox widget
    if "selected_mode" not in st.session_state:
        st.session_state["selected_mode"] = "Multi"
   
    # Use the session state for the default value of the selectbox
    selected_mode = st.sidebar.selectbox(
        "Select Mode", 
        ["Multi", "Compare", "Weekly", "Multi-Env Compare"],
        index=["Multi", "Compare", "Weekly", "Multi-Env Compare"].index(st.session_state["selected_mode"])
    )
    
    # Update the session state with the new selection
    st.session_state["selected_mode"] = selected_mode
    st.session_state["mode"] = selected_mode.lower()

    mode_display = f'## Current mode: {st.session_state["mode"].title()} mode'
    st.sidebar.markdown(mode_display)

    if st.session_state["mode"] == "multi":
        multiple_main()
    elif st.session_state["mode"] == "compare":
        st.sidebar.markdown("### Upload Files for Comparison")
        upload_option = st.sidebar.radio("Upload method", ["Single uploader", "Two separate uploaders"])
        
        if upload_option == "Single uploader":
            uploaded_files = st.sidebar.file_uploader("Upload CSV or XLSX files for comparison", type=["csv", "xlsx"], accept_multiple_files=True)
            if uploaded_files:
                if len(uploaded_files) < 2:
                    st.warning("Please upload at least two files for comparison.")
                elif len(uploaded_files) > 2:
                    st.warning("More than two files uploaded. Only the first two will be used for comparison.")
                else:
                    with st.spinner('Processing...'):
                        double_main(uploaded_files[0], uploaded_files[1])
                    st.success('Comparison Complete!')
        else:
            col1, col2 = st.sidebar.columns(2)
            with col1:
                uploaded_file1 = st.file_uploader("Upload older CSV/XLSX file", type=["csv", "xlsx"], key="file1")
            with col2:
                uploaded_file2 = st.file_uploader("Upload newer CSV/XLSX file", type=["csv", "xlsx"], key="file2")
            
            if uploaded_file1 is not None and uploaded_file2 is not None:
                with st.spinner('Processing...'):
                    double_main(uploaded_file1, uploaded_file2)
                st.success('Comparison Complete!')
            elif uploaded_file1 is not None or uploaded_file2 is not None:
                st.warning("Please upload both files for comparison.")
    elif st.session_state["mode"] == "weekly":
        uploaded_files = st.sidebar.file_uploader("Upload CSV or XLSX files for Weekly Report", type=["csv", "xlsx"], accept_multiple_files=True)
        if uploaded_files:
            generate_weekly_report(uploaded_files)
    elif st.session_state["mode"] == "multi-env compare":
        multi_env_compare_main()

if __name__ == "__main__":
    main()