File size: 8,151 Bytes
cfad59e
 
cd8fcb3
cf4c4b7
3e5674a
3ff5801
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cfad59e
 
cd8fcb3
3ff5801
cd8fcb3
cf4c4b7
337328d
 
 
cd8fcb3
cfad59e
 
3ff5801
 
 
 
3e5674a
 
cd8fcb3
cfad59e
cd8fcb3
 
 
cfad59e
337328d
 
 
 
 
 
 
 
cfad59e
cd8fcb3
 
 
cfad59e
cd8fcb3
 
 
cfad59e
cd8fcb3
 
3e5674a
cd8fcb3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e5674a
 
 
 
337328d
 
 
cd8fcb3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e5674a
cd8fcb3
 
 
 
 
3e5674a
cd8fcb3
 
3e5674a
cd8fcb3
3ff5801
cd8fcb3
 
 
 
 
 
 
 
3e5674a
cd8fcb3
 
 
 
 
 
 
 
 
cf4c4b7
cd8fcb3
 
 
 
 
cf4c4b7
cd8fcb3
 
 
 
 
cfad59e
cd8fcb3
cf4c4b7
cd8fcb3
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
import pandas as pd
import streamlit as st
import plotly.graph_objects as go
from pre import preprocess_uploaded_file
from datetime import datetime
import re

def extract_date_from_filename(filename):
    """Extract date from various filename formats"""
    # Try pattern for "name_YYYYMMDD_HHMMSS" format
    pattern1 = r'_(\d{8})_(\d{6})'
    match1 = re.search(pattern1, filename)
    if match1:
        try:
            return datetime.strptime(f"{match1.group(1)}_{match1.group(2)}", '%Y%m%d_%H%M%S')
        except ValueError:
            pass
    
    # Try pattern for "name_YYYYMMDD" format
    pattern2 = r'_(\d{8})'
    match2 = re.search(pattern2, filename)
    if match2:
        try:
            return datetime.strptime(match2.group(1), '%Y%m%d')
        except ValueError:
            pass
    
    # Try pattern for "nameYYYYMMDD" format (e.g. batch_20250224)
    pattern3 = r'(\d{8})'
    match3 = re.search(pattern3, filename)
    if match3:
        try:
            return datetime.strptime(match3.group(1), '%Y%m%d')
        except ValueError:
            pass
    
    # If no patterns match, return current date with a warning
    st.warning(f"Could not extract date from filename: {filename}. Using current date instead.")
    return datetime.now()

def generate_weekly_report(uploaded_files):
    if not uploaded_files:
        st.error("No files uploaded. Please upload files for analysis.")
        return

    # Set pandas option to use Copy-on-Write
    pd.options.mode.copy_on_write = True

    combined_data = pd.DataFrame()
    for uploaded_file in uploaded_files:
        data = preprocess_uploaded_file(uploaded_file)
        
        # Extract date from filename
        file_datetime = extract_date_from_filename(uploaded_file.name)
        file_date = file_datetime.date()
        
        data['File Date'] = file_date
        combined_data = pd.concat([combined_data, data], ignore_index=True)

    if combined_data.empty:
        st.error("No data found in the uploaded files. Please check the file contents.")
        return

    # Create a boolean mask for failed data
    failed_mask = combined_data['Status'] == 'FAILED'

    # Use .loc to set the 'Date' column for failed data
    combined_data.loc[failed_mask, 'Date'] = combined_data.loc[failed_mask, 'File Date']

    # Filter failed data
    failed_data = combined_data[failed_mask]

    if failed_data.empty:
        st.warning("No failed scenarios found in the uploaded data.")
        return

    # UI for selecting environments and functional areas
    environments = combined_data['Environment'].unique()
    selected_environments = st.multiselect("Select Environments", options=environments, default=environments)

    all_functional_areas = failed_data['Functional area'].unique()
    area_choice = st.radio("Choose Functional Areas to Display", ['All', 'Select Functional Areas'])

    if area_choice == 'Select Functional Areas':
        selected_functional_areas = st.multiselect("Select Functional Areas", options=all_functional_areas)
        if not selected_functional_areas:
            st.error("Please select at least one functional area.")
            return
    else:
        selected_functional_areas = all_functional_areas

    # Date range selection
    min_date = failed_data['Date'].min()
    max_date = failed_data['Date'].max()
    col1, col2 = st.columns(2)
    with col1:
        start_date = st.date_input("Start Date", min_value=min_date, max_value=max_date, value=min_date)
    with col2:
        end_date = st.date_input("End Date", min_value=min_date, max_value=max_date, value=max_date)

    # Filter data based on selections and date range
    filtered_data = failed_data[
        (failed_data['Environment'].isin(selected_environments)) &
        (failed_data['Date'] >= start_date) &
        (failed_data['Date'] <= end_date)
    ]
    if area_choice == 'Select Functional Areas':
        filtered_data = filtered_data[filtered_data['Functional area'].isin(selected_functional_areas)]

    # Group by Date, Environment, and Functional area
    daily_failures = filtered_data.groupby(['Date', 'Environment', 'Functional area']).size().unstack(level=[1, 2], fill_value=0)

    # Ensure we have a continuous date range
    date_range = pd.date_range(start=start_date, end=end_date)
    daily_failures = daily_failures.reindex(date_range, fill_value=0)

    # Convert all columns to int64 to avoid Arrow serialization issues
    daily_failures = daily_failures.astype('int64')

    # Y-axis scaling option
    y_axis_scale = st.radio("Y-axis Scaling", ["Fixed", "Dynamic"])

    # Create an interactive plot using Plotly
    fig = go.Figure()

    for env in selected_environments:
        if env in daily_failures.columns.levels[0]:
            env_data = daily_failures[env]
            if area_choice == 'All':
                total_failures = env_data.sum(axis=1)
                fig.add_trace(go.Scatter(x=daily_failures.index, y=total_failures,
                                         mode='lines+markers', name=f'{env} - All Areas'))
            else:
                for area in selected_functional_areas:
                    if area in env_data.columns:
                        fig.add_trace(go.Scatter(x=daily_failures.index, y=env_data[area],
                                                 mode='lines+markers', name=f'{env} - {area}'))

    fig.update_layout(
        title='Failure Rates Comparison Across Environments Over Time',
        xaxis_title='Date',
        yaxis_title='Number of Failures',
        legend_title='Environment - Functional Area',
        hovermode='closest'
    )

    if y_axis_scale == "Fixed":
        fig.update_yaxes(rangemode="tozero")
    else:
        pass

    # Use st.plotly_chart to display the interactive chart
    st.plotly_chart(fig, use_container_width=True)

    # Add interactivity for scenario details
    st.write("Select a date and environment to see detailed scenario information:")

    selected_date = st.date_input("Select a date", min_value=start_date, max_value=end_date, value=start_date)
    selected_env = st.selectbox("Select an environment", options=selected_environments)

    if selected_date and selected_env:
        st.write(f"### Detailed Scenarios for {selected_date} - {selected_env}")

        day_scenarios = filtered_data[(filtered_data['Date'] == selected_date) & 
                                      (filtered_data['Environment'] == selected_env)]

        if not day_scenarios.empty:
            st.dataframe(day_scenarios[['Functional area', 'Scenario Name', 'Error Message', 'Time spent(m:s)']])
        else:
            st.write("No failing scenarios found for the selected date and environment.")

    # Summary Statistics
    st.write("### Summary Statistics")
    for env in selected_environments:
        env_data = filtered_data[filtered_data['Environment'] == env]
        total_failures = len(env_data)

        if len(daily_failures) > 0:
            avg_daily_failures = total_failures / len(daily_failures)
            if env in daily_failures.columns.levels[0]:
                max_daily_failures = daily_failures[env].sum(axis=1).max()
                min_daily_failures = daily_failures[env].sum(axis=1).min()
            else:
                max_daily_failures = min_daily_failures = 0
        else:
            avg_daily_failures = max_daily_failures = min_daily_failures = 0

        st.write(f"**{env}**:")
        st.write(f"  - Total Failures: {total_failures}")
        st.write(f"  - Average Daily Failures: {avg_daily_failures:.2f}")
        st.write(f"  - Max Daily Failures: {max_daily_failures}")
        st.write(f"  - Min Daily Failures: {min_daily_failures}")

        if area_choice == 'Select Functional Areas':
            st.write("\n  **Failures by Functional Area:**")
            for area in selected_functional_areas:
                area_total = len(env_data[env_data['Functional area'] == area])
                st.write(f"    - {area}: {area_total}")

        st.write("---")

    # Display raw data for verification
    if st.checkbox("Show Raw Data"):
        st.write(daily_failures)