Spaces:
Sleeping
Sleeping
Updated ui look for second.py compare
Browse files
second.py
CHANGED
@@ -1,18 +1,15 @@
|
|
1 |
-
# Import necessary libraries
|
2 |
import pandas as pd
|
3 |
import streamlit as st
|
4 |
-
import
|
5 |
-
import io
|
6 |
-
import matplotlib.pyplot as plt
|
7 |
-
import numpy as np
|
8 |
from pre import preprocess_uploaded_file
|
9 |
|
|
|
|
|
10 |
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
if uploaded_file1 is not None and uploaded_file2 is not None:
|
16 |
|
17 |
# Preprocess the uploaded CSV files
|
18 |
data_1 = preprocess_uploaded_file(uploaded_file1)
|
@@ -20,16 +17,14 @@ def double_main(uploaded_file1,uploaded_file2):
|
|
20 |
|
21 |
# Determine which file is older and newer
|
22 |
if data_1['Start datetime'].min() < data_2['Start datetime'].min():
|
23 |
-
|
24 |
-
newer_df = data_2
|
25 |
else:
|
26 |
-
|
27 |
-
newer_df = data_1
|
28 |
|
29 |
# Convert time columns to MM:SS format
|
30 |
older_df['Time spent'] = pd.to_datetime(older_df['Time spent'], unit='s').dt.strftime('%M:%S')
|
31 |
newer_df['Time spent'] = pd.to_datetime(newer_df['Time spent'], unit='s').dt.strftime('%M:%S')
|
32 |
-
|
33 |
# Get start datetime of each file
|
34 |
older_datetime = older_df['Start datetime'].min()
|
35 |
newer_datetime = newer_df['Start datetime'].min()
|
@@ -41,84 +36,107 @@ def double_main(uploaded_file1,uploaded_file2):
|
|
41 |
# Merge dataframes on 'scenario name'
|
42 |
merged_df = pd.merge(older_df, newer_df, on=['Functional area', 'Scenario name'], suffixes=('_old', '_new'))
|
43 |
|
44 |
-
# Filter scenarios
|
45 |
fail_to_fail_scenarios = merged_df[(merged_df['Status_old'] == 'FAILED') & (merged_df['Status_new'] == 'FAILED')]
|
46 |
-
|
47 |
-
# Display Consistent Failures section
|
48 |
-
st.markdown("### Consistent Failures(previously failing, now failing)")
|
49 |
-
|
50 |
-
# Get failing scenarios count
|
51 |
-
fail_count = len(fail_to_fail_scenarios)
|
52 |
-
st.write(f"Failing scenarios Count: {fail_count}")
|
53 |
-
|
54 |
-
# Display filtered dataframe
|
55 |
-
columns_to_display1 = ['Functional area', 'Scenario name', 'Error message_old', 'Error message_new']
|
56 |
-
st.write(fail_to_fail_scenarios[columns_to_display1])
|
57 |
-
|
58 |
-
# Filter scenarios that were passing and now failing
|
59 |
pass_to_fail_scenarios = merged_df[(merged_df['Status_old'] == 'PASSED') & (merged_df['Status_new'] == 'FAILED')]
|
|
|
60 |
|
61 |
-
#
|
62 |
-
|
63 |
-
|
64 |
-
# Get failing scenarios count
|
65 |
pass_fail_count = len(pass_to_fail_scenarios)
|
66 |
-
|
67 |
-
|
68 |
-
# Display filtered dataframe
|
69 |
-
columns_to_display2 = ['Functional area', 'Scenario name', 'Error message_new', 'Time spent_old','Time spent_new',]
|
70 |
-
st.write(pass_to_fail_scenarios[columns_to_display2])
|
71 |
-
|
72 |
-
# Filter scenarios that were failing and now passing
|
73 |
-
fail_to_pass_scenarios = merged_df[(merged_df['Status_old'] == 'FAILED') & (merged_df['Status_new'] == 'PASSED')]
|
74 |
|
75 |
-
# Display
|
76 |
-
|
|
|
|
|
|
|
|
|
|
|
77 |
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import pandas as pd
|
2 |
import streamlit as st
|
3 |
+
import plotly.graph_objects as go
|
|
|
|
|
|
|
4 |
from pre import preprocess_uploaded_file
|
5 |
|
6 |
+
def convert_df(df):
|
7 |
+
return df.to_csv(index=False).encode('utf-8')
|
8 |
|
9 |
+
def double_main(uploaded_file1, uploaded_file2):
|
10 |
+
if uploaded_file1 is None or uploaded_file2 is None:
|
11 |
+
st.warning("Please upload both CSV files for comparison.")
|
12 |
+
return
|
|
|
13 |
|
14 |
# Preprocess the uploaded CSV files
|
15 |
data_1 = preprocess_uploaded_file(uploaded_file1)
|
|
|
17 |
|
18 |
# Determine which file is older and newer
|
19 |
if data_1['Start datetime'].min() < data_2['Start datetime'].min():
|
20 |
+
older_df, newer_df = data_1, data_2
|
|
|
21 |
else:
|
22 |
+
older_df, newer_df = data_2, data_1
|
|
|
23 |
|
24 |
# Convert time columns to MM:SS format
|
25 |
older_df['Time spent'] = pd.to_datetime(older_df['Time spent'], unit='s').dt.strftime('%M:%S')
|
26 |
newer_df['Time spent'] = pd.to_datetime(newer_df['Time spent'], unit='s').dt.strftime('%M:%S')
|
27 |
+
|
28 |
# Get start datetime of each file
|
29 |
older_datetime = older_df['Start datetime'].min()
|
30 |
newer_datetime = newer_df['Start datetime'].min()
|
|
|
36 |
# Merge dataframes on 'scenario name'
|
37 |
merged_df = pd.merge(older_df, newer_df, on=['Functional area', 'Scenario name'], suffixes=('_old', '_new'))
|
38 |
|
39 |
+
# Filter scenarios
|
40 |
fail_to_fail_scenarios = merged_df[(merged_df['Status_old'] == 'FAILED') & (merged_df['Status_new'] == 'FAILED')]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
pass_to_fail_scenarios = merged_df[(merged_df['Status_old'] == 'PASSED') & (merged_df['Status_new'] == 'FAILED')]
|
42 |
+
fail_to_pass_scenarios = merged_df[(merged_df['Status_old'] == 'FAILED') & (merged_df['Status_new'] == 'PASSED')]
|
43 |
|
44 |
+
# Get counts
|
45 |
+
fail_count = len(fail_to_fail_scenarios)
|
|
|
|
|
46 |
pass_fail_count = len(pass_to_fail_scenarios)
|
47 |
+
pass_count = len(fail_to_pass_scenarios)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
|
49 |
+
# Display summary chart
|
50 |
+
status_counts = {
|
51 |
+
'Consistent Failures': fail_count,
|
52 |
+
'New Failures': pass_fail_count,
|
53 |
+
'New Passes': pass_count
|
54 |
+
}
|
55 |
+
status_df = pd.DataFrame.from_dict(status_counts, orient='index', columns=['Count'])
|
56 |
|
57 |
+
st.subheader("Summary of Scenario Status Changes")
|
58 |
+
|
59 |
+
# Create a bar chart using Plotly
|
60 |
+
fig = go.Figure(data=[
|
61 |
+
go.Bar(
|
62 |
+
x=status_df.index,
|
63 |
+
y=status_df['Count'],
|
64 |
+
text=status_df['Count'],
|
65 |
+
textposition='outside',
|
66 |
+
textfont=dict(size=14),
|
67 |
+
marker_color=['#1f77b4', '#ff7f0e', '#2ca02c'], # Custom colors for each bar
|
68 |
+
width=0.6 # Adjust bar width
|
69 |
+
)
|
70 |
+
])
|
71 |
+
|
72 |
+
# Customize the layout
|
73 |
+
fig.update_layout(
|
74 |
+
yaxis=dict(
|
75 |
+
title='Count',
|
76 |
+
range=[0, max(status_df['Count']) * 1.1] # Extend y-axis range by 10% to fit labels
|
77 |
+
),
|
78 |
+
xaxis_title="Status",
|
79 |
+
hoverlabel=dict(bgcolor="white", font_size=16),
|
80 |
+
margin=dict(l=20, r=20, t=40, b=20),
|
81 |
+
uniformtext_minsize=8,
|
82 |
+
uniformtext_mode='hide'
|
83 |
+
)
|
84 |
+
|
85 |
+
# Ensure all bars are visible
|
86 |
+
fig.update_traces(marker_line_width=1, marker_line_color="black", selector=dict(type="bar"))
|
87 |
+
|
88 |
+
# Add hover text
|
89 |
+
fig.update_traces(
|
90 |
+
hovertemplate="<b>%{x}</b><br>Count: %{y}<extra></extra>"
|
91 |
+
)
|
92 |
|
93 |
+
# Display the chart
|
94 |
+
st.plotly_chart(fig, use_container_width=True)
|
95 |
+
|
96 |
+
# Use tabs to display data
|
97 |
+
tab1, tab2, tab3 = st.tabs(["Consistent Failures", "New Failures", "New Passes"])
|
98 |
+
|
99 |
+
with tab1:
|
100 |
+
st.write(f"Failing scenarios Count: {fail_count}")
|
101 |
+
columns_to_display1 = ['Functional area', 'Scenario name', 'Error message_old', 'Error message_new']
|
102 |
+
st.dataframe(fail_to_fail_scenarios[columns_to_display1])
|
103 |
+
csv = convert_df(fail_to_fail_scenarios[columns_to_display1])
|
104 |
+
st.download_button("Download Consistent Failures as CSV", data=csv, file_name='consistent_failures.csv', mime='text/csv')
|
105 |
+
|
106 |
+
with tab2:
|
107 |
+
st.write(f"Failing scenarios Count: {pass_fail_count}")
|
108 |
+
columns_to_display2 = ['Functional area', 'Scenario name', 'Error message_new', 'Time spent_old', 'Time spent_new']
|
109 |
+
st.dataframe(pass_to_fail_scenarios[columns_to_display2])
|
110 |
+
csv = convert_df(pass_to_fail_scenarios[columns_to_display2])
|
111 |
+
st.download_button("Download New Failures as CSV", data=csv, file_name='new_failures.csv', mime='text/csv')
|
112 |
+
|
113 |
+
with tab3:
|
114 |
+
st.write(f"Passing scenarios Count: {pass_count}")
|
115 |
+
columns_to_display3 = ['Functional area', 'Scenario name', 'Error message_old', 'Time spent_old', 'Time spent_new']
|
116 |
+
st.dataframe(fail_to_pass_scenarios[columns_to_display3])
|
117 |
+
csv = convert_df(fail_to_pass_scenarios[columns_to_display3])
|
118 |
+
st.download_button("Download New Passes as CSV", data=csv, file_name='new_passes.csv', mime='text/csv')
|
119 |
+
|
120 |
+
def main():
|
121 |
+
st.title("CSV Comparison Tool")
|
122 |
+
|
123 |
+
st.markdown("""
|
124 |
+
This tool compares two CSV files and highlights the differences in the scenarios.
|
125 |
+
Please upload the older and newer CSV files below.
|
126 |
+
""")
|
127 |
+
|
128 |
+
col1, col2 = st.columns(2)
|
129 |
+
|
130 |
+
with col1:
|
131 |
+
uploaded_file1 = st.file_uploader("Upload the older CSV file", type='csv', key='uploader1')
|
132 |
+
|
133 |
+
with col2:
|
134 |
+
uploaded_file2 = st.file_uploader("Upload the newer CSV file", type='csv', key='uploader2')
|
135 |
+
|
136 |
+
if uploaded_file1 is not None and uploaded_file2 is not None:
|
137 |
+
with st.spinner('Processing...'):
|
138 |
+
double_main(uploaded_file1, uploaded_file2)
|
139 |
+
st.success('Comparison Complete!')
|
140 |
+
|
141 |
+
if __name__ == "__main__":
|
142 |
+
main()
|