BananaSauce commited on
Commit
9ca7e46
·
1 Parent(s): ca3af14

Update second.py

Browse files
Files changed (1) hide show
  1. second.py +5 -24
second.py CHANGED
@@ -4,35 +4,16 @@ import csv
4
  import io
5
  import matplotlib.pyplot as plt
6
  import numpy as np
7
- from pre import preprocess_csv, load_data, fill_missing_data
8
 
9
 
10
  def double_main(uploaded_file1,uploaded_file2):
11
  # st.title('Single CSV Analyzer')
12
 
13
  if uploaded_file1 is not None and uploaded_file2 is not None:
14
- # Process the csv files with header
15
- filet_1 = uploaded_file1.read()
16
- processed_output_1 = preprocess_csv(filet_1)
17
- processed_file_1 = io.StringIO(processed_output_1.getvalue())
18
- data_1 = load_data(processed_file_1)
19
-
20
- filet_2 = uploaded_file2.read()
21
- processed_output_2 = preprocess_csv(filet_2)
22
- processed_file_2 = io.StringIO(processed_output_2.getvalue())
23
- data_2 = load_data(processed_file_2)
24
-
25
- data_1 = fill_missing_data(data_1, 4, 0)
26
- data_1['Start datetime'] = pd.to_datetime(data_1['Start datetime'], errors='coerce')
27
- data_1['End datetime'] = pd.to_datetime(data_1['End datetime'], errors='coerce')
28
- data_1['Time spent'] = (data_1['End datetime'] - data_1['Start datetime']).dt.total_seconds()
29
-
30
- data_2 = fill_missing_data(data_2, 4, 0)
31
- data_2['Start datetime'] = pd.to_datetime(data_2['Start datetime'], errors='coerce')
32
- data_2['End datetime'] = pd.to_datetime(data_2['End datetime'], errors='coerce')
33
- data_2['Time spent'] = (data_2['End datetime'] - data_2['Start datetime']).dt.total_seconds()
34
-
35
- # Determine which DataFrame is older
36
  if data_1['Start datetime'].min() < data_2['Start datetime'].min():
37
  older_df = data_1
38
  newer_df = data_2
@@ -77,7 +58,7 @@ def double_main(uploaded_file1,uploaded_file2):
77
  fail_to_pass_scenarios = merged_df[(merged_df['Status_old'] == 'FAILED') & (merged_df['Status_new'] == 'PASSED')]
78
 
79
  # Display filtered dataframe in Streamlit app
80
- st.markdown("### New Passes(previously failing, now passing)")
81
  pass_count = len(fail_to_pass_scenarios)
82
  st.write(f"Passing scenarios Count: {pass_count}")
83
  # Select columns for display
 
4
  import io
5
  import matplotlib.pyplot as plt
6
  import numpy as np
7
+ from pre import preprocess_uploaded_file
8
 
9
 
10
  def double_main(uploaded_file1,uploaded_file2):
11
  # st.title('Single CSV Analyzer')
12
 
13
  if uploaded_file1 is not None and uploaded_file2 is not None:
14
+ # Process the csv files with header
15
+ data_1 = preprocess_uploaded_file(uploaded_file1)
16
+ data_2 = preprocess_uploaded_file(uploaded_file2)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17
  if data_1['Start datetime'].min() < data_2['Start datetime'].min():
18
  older_df = data_1
19
  newer_df = data_2
 
58
  fail_to_pass_scenarios = merged_df[(merged_df['Status_old'] == 'FAILED') & (merged_df['Status_new'] == 'PASSED')]
59
 
60
  # Display filtered dataframe in Streamlit app
61
+ st.markdown("### New Failures(previously failing, now passing)")
62
  pass_count = len(fail_to_pass_scenarios)
63
  st.write(f"Passing scenarios Count: {pass_count}")
64
  # Select columns for display