# Import necessary libraries import pandas as pd import streamlit as st import csv import io import matplotlib.pyplot as plt import numpy as np from pre import preprocess_uploaded_file # Main function to process 2 uploaded CSV files def double_main(uploaded_file1,uploaded_file2): # Check if both files are uploaded if uploaded_file1 is not None and uploaded_file2 is not None: # Preprocess the uploaded CSV files data_1 = preprocess_uploaded_file(uploaded_file1) data_2 = preprocess_uploaded_file(uploaded_file2) # Determine which file is older and newer if data_1['Start datetime'].min() < data_2['Start datetime'].min(): older_df = data_1 newer_df = data_2 else: older_df = data_2 newer_df = data_1 # Convert time columns to MM:SS format older_df['Time spent'] = pd.to_datetime(older_df['Time spent'], unit='s').dt.strftime('%M:%S') newer_df['Time spent'] = pd.to_datetime(newer_df['Time spent'], unit='s').dt.strftime('%M:%S') # Get start datetime of each file older_datetime = older_df['Start datetime'].min() newer_datetime = newer_df['Start datetime'].min() # Display start datetime of each file st.write(f"The older csv started on {older_datetime}") st.write(f"The newer csv started on {newer_datetime}") # Merge dataframes on 'scenario name' merged_df = pd.merge(older_df, newer_df, on=['Functional area', 'Scenario name'], suffixes=('_old', '_new')) # Filter scenarios that were failing and are still failing fail_to_fail_scenarios = merged_df[(merged_df['Status_old'] == 'FAILED') & (merged_df['Status_new'] == 'FAILED')] # Display Consistent Failures section st.markdown("### Consistent Failures(previously failing, now failing)") # Get failing scenarios count fail_count = len(fail_to_fail_scenarios) st.write(f"Failing scenarios Count: {fail_count}") # Display filtered dataframe columns_to_display1 = ['Functional area', 'Scenario name', 'Error message_old', 'Error message_new'] st.write(fail_to_fail_scenarios[columns_to_display1]) # Filter scenarios that were passing and now failing pass_to_fail_scenarios = merged_df[(merged_df['Status_old'] == 'PASSED') & (merged_df['Status_new'] == 'FAILED')] # Display New Failures section st.markdown("### New Failures(previously passing, now failing)") # Get failing scenarios count pass_fail_count = len(pass_to_fail_scenarios) st.write(f"Failing scenarios Count: {pass_fail_count}") # Display filtered dataframe columns_to_display2 = ['Functional area', 'Scenario name', 'Error message_new', 'Time spent_old','Time spent_new',] st.write(pass_to_fail_scenarios[columns_to_display2]) # Filter scenarios that were failing and now passing fail_to_pass_scenarios = merged_df[(merged_df['Status_old'] == 'FAILED') & (merged_df['Status_new'] == 'PASSED')] # Display New Passes section st.markdown("### New Passes(previously failing, now passing)") # Get passing scenarios count pass_count = len(fail_to_pass_scenarios) st.write(f"Passing scenarios Count: {pass_count}") # Display filtered dataframe columns_to_display3 = ['Functional area', 'Scenario name', 'Error message_old', 'Time spent_old','Time spent_new',] st.write(fail_to_pass_scenarios[columns_to_display3]) # Create a Pandas Excel writer using XlsxWriter as the engine excel_writer = pd.ExcelWriter('comparison_results.xlsx', engine='xlsxwriter') # Write each section to a separate sheet fail_to_fail_scenarios.loc[:, columns_to_display1].to_excel(excel_writer, sheet_name='Consistent Failures', index=False) pass_to_fail_scenarios.loc[:, columns_to_display2].to_excel(excel_writer, sheet_name='New Failures', index=False) fail_to_pass_scenarios.loc[:, columns_to_display3].to_excel(excel_writer, sheet_name='New Passes', index=False) # Add a sheet to store information about CSV versions csv_version_sheet = excel_writer.book.add_worksheet('CSV Details') # Write the CSV version information csv_version_sheet.write('A1', 'Older CSV:') csv_version_sheet.write('B1', 'Newer CSV:') csv_version_sheet.write('A2', older_df['Start datetime'].min().strftime('%Y-%m-%d %H:%M:%S')) csv_version_sheet.write('B2', newer_df['Start datetime'].min().strftime('%Y-%m-%d %H:%M:%S')) # Save the Excel file excel_writer.save() # Create a Download Excel button st.markdown("### Download Excel Report") st.markdown("Click below to download the comparison results in Excel format:") with open('comparison_results.xlsx', 'rb') as excel_file: excel_bytes = excel_file.read() st.download_button(label='Download Excel Report', data=excel_bytes, file_name='comparison_results.xlsx', key='excel-download')