Spaces:
Runtime error
Runtime error
Baraaqasem
commited on
Upload 14 files
Browse files- src/videogen_hub/benchmark/VBench_full_info.json +0 -0
- src/videogen_hub/benchmark/__init__.py +0 -0
- src/videogen_hub/benchmark/fal_text_guided_t2v.py +120 -0
- src/videogen_hub/benchmark/merge_prompt.py +25 -0
- src/videogen_hub/benchmark/prompt_generation.py +67 -0
- src/videogen_hub/benchmark/sample_prompt.py +70 -0
- src/videogen_hub/benchmark/t2v_vbench_1000.json +0 -0
- src/videogen_hub/benchmark/t2v_vbench_200.json +1956 -0
- src/videogen_hub/benchmark/t2v_vbench_800.json +0 -0
- src/videogen_hub/benchmark/t2v_vbench_remain.json +0 -0
- src/videogen_hub/benchmark/t2v_vbench_remain_1000.json +0 -0
- src/videogen_hub/benchmark/t2v_vbench_remain_200.json +0 -0
- src/videogen_hub/benchmark/text_guided_t2v.py +137 -0
- src/videogen_hub/benchmark/transform.py +16 -0
src/videogen_hub/benchmark/VBench_full_info.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
src/videogen_hub/benchmark/__init__.py
ADDED
File without changes
|
src/videogen_hub/benchmark/fal_text_guided_t2v.py
ADDED
@@ -0,0 +1,120 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Optional
|
2 |
+
import os
|
3 |
+
from tqdm import tqdm
|
4 |
+
import json, requests
|
5 |
+
import fal_client
|
6 |
+
# import json
|
7 |
+
|
8 |
+
def infer_text_guided_vg_bench(
|
9 |
+
model_name,
|
10 |
+
result_folder: str = "results",
|
11 |
+
experiment_name: str = "Exp_Text-Guided_VG",
|
12 |
+
overwrite_model_outputs: bool = False,
|
13 |
+
overwrite_inputs: bool = False,
|
14 |
+
limit_videos_amount: Optional[int] = None,
|
15 |
+
):
|
16 |
+
"""
|
17 |
+
Performs inference on the VideogenHub dataset using the provided text-guided video generation model.
|
18 |
+
|
19 |
+
Args:
|
20 |
+
model_name: name of the model we want to run inference on
|
21 |
+
result_folder (str, optional): Path to the root directory where the results should be saved.
|
22 |
+
Defaults to 'results'.
|
23 |
+
experiment_name (str, optional): Name of the folder inside 'result_folder' where results
|
24 |
+
for this particular experiment will be stored. Defaults to "Exp_Text-Guided_IG".
|
25 |
+
overwrite_model_outputs (bool, optional): If set to True, will overwrite any pre-existing
|
26 |
+
model outputs. Useful for resuming runs. Defaults to False.
|
27 |
+
overwrite_inputs (bool, optional): If set to True, will overwrite any pre-existing input
|
28 |
+
samples. Typically, should be set to False unless there's a need to update the inputs.
|
29 |
+
Defaults to False.
|
30 |
+
limit_videos_amount (int, optional): Limits the number of videos to be processed. If set to
|
31 |
+
None, all videos in the dataset will be processed.
|
32 |
+
|
33 |
+
Returns:
|
34 |
+
None. Results are saved in the specified directory.
|
35 |
+
|
36 |
+
Notes:
|
37 |
+
The function processes each sample from the dataset, uses the model to infer an video based
|
38 |
+
on text prompts, and then saves the resulting videos in the specified directories.
|
39 |
+
"""
|
40 |
+
benchmark_prompt_path = "t2v_vbench_1000.json"
|
41 |
+
prompts = json.load(open(benchmark_prompt_path, "r"))
|
42 |
+
save_path = os.path.join(result_folder, experiment_name, "dataset_lookup.json")
|
43 |
+
if overwrite_inputs or not os.path.exists(save_path):
|
44 |
+
if not os.path.exists(os.path.join(result_folder, experiment_name)):
|
45 |
+
os.makedirs(os.path.join(result_folder, experiment_name))
|
46 |
+
with open(save_path, "w") as f:
|
47 |
+
json.dump(prompts, f, indent=4)
|
48 |
+
|
49 |
+
print(
|
50 |
+
"========> Running Benchmark Dataset:",
|
51 |
+
experiment_name,
|
52 |
+
"| Model:",
|
53 |
+
model_name,
|
54 |
+
)
|
55 |
+
|
56 |
+
if model_name == 'AnimateDiff':
|
57 |
+
fal_model_name = 'fast-animatediff/text-to-video'
|
58 |
+
elif model_name == 'AnimateDiffTurbo':
|
59 |
+
fal_model_name = 'fast-animatediff/turbo/text-to-video'
|
60 |
+
elif model_name == 'FastSVD':
|
61 |
+
fal_model_name = 'fast-svd/text-to-video'
|
62 |
+
else:
|
63 |
+
raise ValueError("Invalid model_name")
|
64 |
+
|
65 |
+
for file_basename, prompt in tqdm(prompts.items()):
|
66 |
+
idx = int(file_basename.split('_')[0])
|
67 |
+
dest_folder = os.path.join(
|
68 |
+
result_folder, experiment_name, model_name
|
69 |
+
)
|
70 |
+
# file_basename = f"{idx}_{prompt['prompt_en'].replace(' ', '_')}.mp4"
|
71 |
+
if not os.path.exists(dest_folder):
|
72 |
+
os.mkdir(dest_folder)
|
73 |
+
dest_file = os.path.join(dest_folder, file_basename)
|
74 |
+
if overwrite_model_outputs or not os.path.exists(dest_file):
|
75 |
+
print("========> Inferencing", dest_file)
|
76 |
+
|
77 |
+
handler = fal_client.submit(
|
78 |
+
f"fal-ai/{fal_model_name}",
|
79 |
+
arguments={
|
80 |
+
"prompt": prompt["prompt_en"]
|
81 |
+
},
|
82 |
+
)
|
83 |
+
|
84 |
+
# for event in handler.iter_events(with_logs=True):
|
85 |
+
# if isinstance(event, fal_client.InProgress):
|
86 |
+
# print('Request in progress')
|
87 |
+
# print(event.logs)
|
88 |
+
|
89 |
+
result = handler.get()
|
90 |
+
result_url = result['video']['url']
|
91 |
+
download_mp4(result_url, dest_file)
|
92 |
+
else:
|
93 |
+
print("========> Skipping", dest_file, ", it already exists")
|
94 |
+
|
95 |
+
if limit_videos_amount is not None and (idx >= limit_videos_amount):
|
96 |
+
break
|
97 |
+
|
98 |
+
def download_mp4(url, filename):
|
99 |
+
try:
|
100 |
+
# Send a GET request to the URL
|
101 |
+
response = requests.get(url, stream=True)
|
102 |
+
response.raise_for_status() # Check if the request was successful
|
103 |
+
|
104 |
+
# Open a local file with write-binary mode
|
105 |
+
with open(filename, 'wb') as file:
|
106 |
+
# Write the response content to the file in chunks
|
107 |
+
for chunk in response.iter_content(chunk_size=8192):
|
108 |
+
file.write(chunk)
|
109 |
+
|
110 |
+
# print(f"Download complete: {filename}")
|
111 |
+
|
112 |
+
except requests.exceptions.RequestException as e:
|
113 |
+
print(f"Error downloading file: {e}")
|
114 |
+
|
115 |
+
if __name__ == "__main__":
|
116 |
+
pass
|
117 |
+
# infer_text_guided_vg_bench(model_name="AnimateDiff")
|
118 |
+
infer_text_guided_vg_bench(result_folder="/mnt/tjena/maxku/max_projects/VideoGenHub/results", model_name="FastSVD")
|
119 |
+
# infer_text_guided_vg_bench(result_folder="/mnt/tjena/maxku/max_projects/VideoGenHub/results", model_name="AnimateDiff")
|
120 |
+
# infer_text_guided_vg_bench(result_folder="/mnt/tjena/maxku/max_projects/VideoGenHub/results", model_name="AnimateDiffTurbo")
|
src/videogen_hub/benchmark/merge_prompt.py
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
|
3 |
+
def main(prmopts_path_1, prompts_path_2):
|
4 |
+
prompts_1 = json.load(open(prmopts_path_1, "r"))
|
5 |
+
prompts_2 = json.load(open(prompts_path_2, "r"))
|
6 |
+
|
7 |
+
new_prompts = {}
|
8 |
+
new_idx = 0
|
9 |
+
for prompt_key in prompts_1:
|
10 |
+
prompt_key_lst = prompt_key.split("_")
|
11 |
+
prompt_key_lst[0] = str(new_idx)
|
12 |
+
new_prompts['_'.join(prompt_key_lst)] = prompts_1[prompt_key]
|
13 |
+
new_idx += 1
|
14 |
+
|
15 |
+
for prompt_key in prompts_2:
|
16 |
+
prompt_key_lst = prompt_key.split("_")
|
17 |
+
prompt_key_lst[0] = str(new_idx)
|
18 |
+
new_prompts['_'.join(prompt_key_lst)] = prompts_2[prompt_key]
|
19 |
+
new_idx += 1
|
20 |
+
|
21 |
+
with open(f"t2v_vbench_1000.json", "w") as f:
|
22 |
+
json.dump(new_prompts, f, indent=4)
|
23 |
+
|
24 |
+
if __name__ == "__main__":
|
25 |
+
main("t2v_vbench_200.json", "t2v_vbench_800.json")
|
src/videogen_hub/benchmark/prompt_generation.py
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import json
|
3 |
+
import numpy as np
|
4 |
+
import random
|
5 |
+
|
6 |
+
# Randomly sample a subset of prompts for benchmarking
|
7 |
+
def main(prompt_path, overwrite_inputs=False):
|
8 |
+
prompts = json.load(open(prompt_path, "r"))
|
9 |
+
|
10 |
+
# construct dimension_count map
|
11 |
+
dimension_count_map = {}
|
12 |
+
dimension_prompt_idx_map = {}
|
13 |
+
dimensions_count = 0
|
14 |
+
for i in range(len(prompts)):
|
15 |
+
prompt = prompts[i]
|
16 |
+
dimensions = prompt["dimension"]
|
17 |
+
for dimension in dimensions:
|
18 |
+
if dimension not in dimension_prompt_idx_map:
|
19 |
+
dimension_prompt_idx_map[dimension] = []
|
20 |
+
dimension_prompt_idx_map[dimension].append(i)
|
21 |
+
|
22 |
+
if dimension not in dimension_count_map:
|
23 |
+
dimension_count_map[dimension] = 0
|
24 |
+
|
25 |
+
dimension_count_map[dimension] += 1
|
26 |
+
|
27 |
+
dimensions_count += 1
|
28 |
+
|
29 |
+
print(
|
30 |
+
"Dimensions count (each prompt can contribute to more than one dimension count):",
|
31 |
+
dimensions_count,
|
32 |
+
)
|
33 |
+
print(dimension_count_map)
|
34 |
+
|
35 |
+
target_prompts_count = 800
|
36 |
+
# sample prompts based on the distribution of dimensions
|
37 |
+
sampled_prompts = list()
|
38 |
+
remaining_prompts = list()
|
39 |
+
dimension_probs = np.array(list(dimension_count_map.values())) / dimensions_count
|
40 |
+
dimensions = list(dimension_count_map.keys())
|
41 |
+
sample_counts = np.random.multinomial(target_prompts_count, dimension_probs)
|
42 |
+
print(sample_counts)
|
43 |
+
for dimension, count in zip(dimensions, sample_counts):
|
44 |
+
|
45 |
+
sampled_prompts_idx = random.sample(dimension_prompt_idx_map[dimension], count)
|
46 |
+
for idx in range(len(prompts)):
|
47 |
+
if idx in sampled_prompts_idx:
|
48 |
+
sampled_prompts.append(prompts[idx])
|
49 |
+
else:
|
50 |
+
remaining_prompts.append(prompts[idx])
|
51 |
+
|
52 |
+
save_path = "./t2v_vbench_1000.json"
|
53 |
+
remaing_data_save_path = "./t2v_vbench_remain_1000.json"
|
54 |
+
if overwrite_inputs or not os.path.exists(save_path):
|
55 |
+
# if not os.path.exists(os.path.join(result_folder, experiment_name)):
|
56 |
+
# os.makedirs(os.path.join(result_folder, experiment_name))
|
57 |
+
with open(save_path, "w") as f:
|
58 |
+
json.dump(sampled_prompts, f, indent=4)
|
59 |
+
|
60 |
+
with open(remaing_data_save_path, "w") as f:
|
61 |
+
json.dump(remaining_prompts, f, indent=4)
|
62 |
+
else:
|
63 |
+
print("Dataset already exists, skipping generation")
|
64 |
+
|
65 |
+
if __name__ == "__main__":
|
66 |
+
main(prompt_path="VBench_full_info.json")
|
67 |
+
# main(prompt_path="t2v_vbench_remain_200.json")
|
src/videogen_hub/benchmark/sample_prompt.py
ADDED
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import json
|
3 |
+
import numpy as np
|
4 |
+
import random
|
5 |
+
|
6 |
+
# Randomly sample a subset of prompts for benchmarking
|
7 |
+
def main(prompt_path, overwrite_inputs=False):
|
8 |
+
prompts = json.load(open(prompt_path, "r"))
|
9 |
+
|
10 |
+
# construct dimension_count map
|
11 |
+
dimension_count_map = {}
|
12 |
+
dimension_prompt_idx_map = {}
|
13 |
+
dimensions_count = 0
|
14 |
+
for key, prompt in prompts.items():
|
15 |
+
dimensions = prompt["dimension"]
|
16 |
+
for dimension in dimensions:
|
17 |
+
if dimension not in dimension_prompt_idx_map:
|
18 |
+
dimension_prompt_idx_map[dimension] = []
|
19 |
+
dimension_prompt_idx_map[dimension].append(key)
|
20 |
+
|
21 |
+
if dimension not in dimension_count_map:
|
22 |
+
dimension_count_map[dimension] = 0
|
23 |
+
|
24 |
+
dimension_count_map[dimension] += 1
|
25 |
+
|
26 |
+
dimensions_count += 1
|
27 |
+
|
28 |
+
print(
|
29 |
+
"Dimensions count (each prompt can contribute to more than one dimension count):",
|
30 |
+
dimensions_count,
|
31 |
+
)
|
32 |
+
print(dimension_count_map)
|
33 |
+
|
34 |
+
target_prompts_count = 800
|
35 |
+
# sample prompts based on the distribution of dimensions
|
36 |
+
sampled_prompts = {}
|
37 |
+
remaining_prompts = {}
|
38 |
+
dimension_probs = np.array(list(dimension_count_map.values())) / dimensions_count
|
39 |
+
dimensions = list(dimension_count_map.keys())
|
40 |
+
sample_counts = np.random.multinomial(target_prompts_count, dimension_probs)
|
41 |
+
print(np.sum(sample_counts))
|
42 |
+
print(sample_counts)
|
43 |
+
for dimension, count in zip(dimensions, sample_counts):
|
44 |
+
|
45 |
+
sampled_prompts_keys = random.sample(dimension_prompt_idx_map[dimension], count)
|
46 |
+
for key in prompts.keys():
|
47 |
+
if key in sampled_prompts_keys:
|
48 |
+
while key in sampled_prompts:
|
49 |
+
key = random.sample(dimension_prompt_idx_map[dimension], 1)[0]
|
50 |
+
sampled_prompts[key] = prompts[key]
|
51 |
+
else:
|
52 |
+
remaining_prompts[key] = prompts[key]
|
53 |
+
|
54 |
+
save_path = "./t2v_vbench_800.json"
|
55 |
+
remaing_data_save_path = "./t2v_vbench_remain_1000.json"
|
56 |
+
print(len(sampled_prompts.keys()))
|
57 |
+
if overwrite_inputs or not os.path.exists(save_path):
|
58 |
+
# if not os.path.exists(os.path.join(result_folder, experiment_name)):
|
59 |
+
# os.makedirs(os.path.join(result_folder, experiment_name))
|
60 |
+
with open(save_path, "w") as f:
|
61 |
+
json.dump(sampled_prompts, f, indent=4)
|
62 |
+
|
63 |
+
with open(remaing_data_save_path, "w") as f:
|
64 |
+
json.dump(remaining_prompts, f, indent=4)
|
65 |
+
else:
|
66 |
+
print("Dataset already exists, skipping generation")
|
67 |
+
|
68 |
+
if __name__ == "__main__":
|
69 |
+
# main(prompt_path="VBench_full_info.json")
|
70 |
+
main(prompt_path="t2v_vbench_remain_200.json")
|
src/videogen_hub/benchmark/t2v_vbench_1000.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
src/videogen_hub/benchmark/t2v_vbench_200.json
ADDED
@@ -0,0 +1,1956 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"0_a_toilet,_frozen_in_time.mp4": {
|
3 |
+
"prompt_en": "a toilet, frozen in time",
|
4 |
+
"dimension": [
|
5 |
+
"temporal_flickering"
|
6 |
+
]
|
7 |
+
},
|
8 |
+
"1_a_laptop,_frozen_in_time.mp4": {
|
9 |
+
"prompt_en": "a laptop, frozen in time",
|
10 |
+
"dimension": [
|
11 |
+
"temporal_flickering"
|
12 |
+
]
|
13 |
+
},
|
14 |
+
"2_In_a_still_frame,_phone_booth.mp4": {
|
15 |
+
"prompt_en": "In a still frame, phone booth",
|
16 |
+
"dimension": [
|
17 |
+
"temporal_flickering"
|
18 |
+
]
|
19 |
+
},
|
20 |
+
"3_A_tranquil_tableau_of_an_apple.mp4": {
|
21 |
+
"prompt_en": "A tranquil tableau of an apple",
|
22 |
+
"dimension": [
|
23 |
+
"temporal_flickering"
|
24 |
+
]
|
25 |
+
},
|
26 |
+
"4_A_tranquil_tableau_of_a_bench.mp4": {
|
27 |
+
"prompt_en": "A tranquil tableau of a bench",
|
28 |
+
"dimension": [
|
29 |
+
"temporal_flickering"
|
30 |
+
]
|
31 |
+
},
|
32 |
+
"5_A_tranquil_tableau_of_an_exquisite_mahogany_dining_table.mp4": {
|
33 |
+
"prompt_en": "A tranquil tableau of an exquisite mahogany dining table",
|
34 |
+
"dimension": [
|
35 |
+
"temporal_flickering"
|
36 |
+
]
|
37 |
+
},
|
38 |
+
"6_A_tranquil_tableau_of_the_jail_cell_was_small_and_dimly_lit,_with_cold,_steel_bars.mp4": {
|
39 |
+
"prompt_en": "A tranquil tableau of the jail cell was small and dimly lit, with cold, steel bars",
|
40 |
+
"dimension": [
|
41 |
+
"temporal_flickering"
|
42 |
+
]
|
43 |
+
},
|
44 |
+
"7_In_a_still_frame,_the_Temple_of_Hephaestus,_with_its_timeless_Doric_grace,_stands_stoically_against_the_backdrop_of_a_quiet_Athens.mp4": {
|
45 |
+
"prompt_en": "In a still frame, the Temple of Hephaestus, with its timeless Doric grace, stands stoically against the backdrop of a quiet Athens",
|
46 |
+
"dimension": [
|
47 |
+
"temporal_flickering"
|
48 |
+
]
|
49 |
+
},
|
50 |
+
"8_In_a_still_frame,_the_ornate_Victorian_streetlamp_stands_solemnly,_adorned_with_intricate_ironwork_and_stained_glass_panels.mp4": {
|
51 |
+
"prompt_en": "In a still frame, the ornate Victorian streetlamp stands solemnly, adorned with intricate ironwork and stained glass panels",
|
52 |
+
"dimension": [
|
53 |
+
"temporal_flickering"
|
54 |
+
]
|
55 |
+
},
|
56 |
+
"9_A_tranquil_tableau_of_in_the_quaint_village_square,_a_traditional_wrought-iron_streetlamp_featured_delicate_filigree_patterns_and_amber-hued_glass_panels.mp4": {
|
57 |
+
"prompt_en": "A tranquil tableau of in the quaint village square, a traditional wrought-iron streetlamp featured delicate filigree patterns and amber-hued glass panels",
|
58 |
+
"dimension": [
|
59 |
+
"temporal_flickering"
|
60 |
+
]
|
61 |
+
},
|
62 |
+
"10_In_a_still_frame,_in_the_heart_of_the_old_city,_a_row_of_ornate_lantern-style_streetlamps_bathed_the_narrow_alleyway_in_a_warm,_welcoming_light.mp4": {
|
63 |
+
"prompt_en": "In a still frame, in the heart of the old city, a row of ornate lantern-style streetlamps bathed the narrow alleyway in a warm, welcoming light",
|
64 |
+
"dimension": [
|
65 |
+
"temporal_flickering"
|
66 |
+
]
|
67 |
+
},
|
68 |
+
"11_In_a_still_frame,_a_tranquil_pond_was_fringed_by_weeping_cherry_trees,_their_blossoms_drifting_lazily_onto_the_glassy_surface.mp4": {
|
69 |
+
"prompt_en": "In a still frame, a tranquil pond was fringed by weeping cherry trees, their blossoms drifting lazily onto the glassy surface",
|
70 |
+
"dimension": [
|
71 |
+
"temporal_flickering"
|
72 |
+
]
|
73 |
+
},
|
74 |
+
"12_a_bird_and_a_cat.mp4": {
|
75 |
+
"prompt_en": "a bird and a cat",
|
76 |
+
"dimension": [
|
77 |
+
"multiple_objects"
|
78 |
+
],
|
79 |
+
"auxiliary_info": {
|
80 |
+
"multiple_objects": {
|
81 |
+
"object": "bird and cat"
|
82 |
+
}
|
83 |
+
}
|
84 |
+
},
|
85 |
+
"13_a_cat_and_a_dog.mp4": {
|
86 |
+
"prompt_en": "a cat and a dog",
|
87 |
+
"dimension": [
|
88 |
+
"multiple_objects"
|
89 |
+
],
|
90 |
+
"auxiliary_info": {
|
91 |
+
"multiple_objects": {
|
92 |
+
"object": "cat and dog"
|
93 |
+
}
|
94 |
+
}
|
95 |
+
},
|
96 |
+
"14_a_sheep_and_a_cow.mp4": {
|
97 |
+
"prompt_en": "a sheep and a cow",
|
98 |
+
"dimension": [
|
99 |
+
"multiple_objects"
|
100 |
+
],
|
101 |
+
"auxiliary_info": {
|
102 |
+
"multiple_objects": {
|
103 |
+
"object": "sheep and cow"
|
104 |
+
}
|
105 |
+
}
|
106 |
+
},
|
107 |
+
"15_an_elephant_and_a_bear.mp4": {
|
108 |
+
"prompt_en": "an elephant and a bear",
|
109 |
+
"dimension": [
|
110 |
+
"multiple_objects"
|
111 |
+
],
|
112 |
+
"auxiliary_info": {
|
113 |
+
"multiple_objects": {
|
114 |
+
"object": "elephant and bear"
|
115 |
+
}
|
116 |
+
}
|
117 |
+
},
|
118 |
+
"16_a_giraffe_and_a_bird.mp4": {
|
119 |
+
"prompt_en": "a giraffe and a bird",
|
120 |
+
"dimension": [
|
121 |
+
"multiple_objects"
|
122 |
+
],
|
123 |
+
"auxiliary_info": {
|
124 |
+
"multiple_objects": {
|
125 |
+
"object": "giraffe and bird"
|
126 |
+
}
|
127 |
+
}
|
128 |
+
},
|
129 |
+
"17_a_couch_and_a_potted_plant.mp4": {
|
130 |
+
"prompt_en": "a couch and a potted plant",
|
131 |
+
"dimension": [
|
132 |
+
"multiple_objects"
|
133 |
+
],
|
134 |
+
"auxiliary_info": {
|
135 |
+
"multiple_objects": {
|
136 |
+
"object": "couch and potted plant"
|
137 |
+
}
|
138 |
+
}
|
139 |
+
},
|
140 |
+
"18_a_laptop_and_a_remote.mp4": {
|
141 |
+
"prompt_en": "a laptop and a remote",
|
142 |
+
"dimension": [
|
143 |
+
"multiple_objects"
|
144 |
+
],
|
145 |
+
"auxiliary_info": {
|
146 |
+
"multiple_objects": {
|
147 |
+
"object": "laptop and remote"
|
148 |
+
}
|
149 |
+
}
|
150 |
+
},
|
151 |
+
"19_a_clock_and_a_backpack.mp4": {
|
152 |
+
"prompt_en": "a clock and a backpack",
|
153 |
+
"dimension": [
|
154 |
+
"multiple_objects"
|
155 |
+
],
|
156 |
+
"auxiliary_info": {
|
157 |
+
"multiple_objects": {
|
158 |
+
"object": "clock and backpack"
|
159 |
+
}
|
160 |
+
}
|
161 |
+
},
|
162 |
+
"20_a_vase_and_scissors.mp4": {
|
163 |
+
"prompt_en": "a vase and scissors",
|
164 |
+
"dimension": [
|
165 |
+
"multiple_objects"
|
166 |
+
],
|
167 |
+
"auxiliary_info": {
|
168 |
+
"multiple_objects": {
|
169 |
+
"object": "vase and scissors"
|
170 |
+
}
|
171 |
+
}
|
172 |
+
},
|
173 |
+
"21_a_teddy_bear_and_a_frisbee.mp4": {
|
174 |
+
"prompt_en": "a teddy bear and a frisbee",
|
175 |
+
"dimension": [
|
176 |
+
"multiple_objects"
|
177 |
+
],
|
178 |
+
"auxiliary_info": {
|
179 |
+
"multiple_objects": {
|
180 |
+
"object": "teddy bear and frisbee"
|
181 |
+
}
|
182 |
+
}
|
183 |
+
},
|
184 |
+
"22_skis_and_a_snowboard.mp4": {
|
185 |
+
"prompt_en": "skis and a snowboard",
|
186 |
+
"dimension": [
|
187 |
+
"multiple_objects"
|
188 |
+
],
|
189 |
+
"auxiliary_info": {
|
190 |
+
"multiple_objects": {
|
191 |
+
"object": "skis and snowboard"
|
192 |
+
}
|
193 |
+
}
|
194 |
+
},
|
195 |
+
"23_a_bottle_and_a_chair.mp4": {
|
196 |
+
"prompt_en": "a bottle and a chair",
|
197 |
+
"dimension": [
|
198 |
+
"multiple_objects"
|
199 |
+
],
|
200 |
+
"auxiliary_info": {
|
201 |
+
"multiple_objects": {
|
202 |
+
"object": "bottle and chair"
|
203 |
+
}
|
204 |
+
}
|
205 |
+
},
|
206 |
+
"24_a_bicycle_and_a_car.mp4": {
|
207 |
+
"prompt_en": "a bicycle and a car",
|
208 |
+
"dimension": [
|
209 |
+
"multiple_objects"
|
210 |
+
],
|
211 |
+
"auxiliary_info": {
|
212 |
+
"multiple_objects": {
|
213 |
+
"object": "bicycle and car"
|
214 |
+
}
|
215 |
+
}
|
216 |
+
},
|
217 |
+
"25_a_bowl_and_a_remote.mp4": {
|
218 |
+
"prompt_en": "a bowl and a remote",
|
219 |
+
"dimension": [
|
220 |
+
"multiple_objects"
|
221 |
+
],
|
222 |
+
"auxiliary_info": {
|
223 |
+
"multiple_objects": {
|
224 |
+
"object": "bowl and remote"
|
225 |
+
}
|
226 |
+
}
|
227 |
+
},
|
228 |
+
"26_broccoli_and_a_backpack.mp4": {
|
229 |
+
"prompt_en": "broccoli and a backpack",
|
230 |
+
"dimension": [
|
231 |
+
"multiple_objects"
|
232 |
+
],
|
233 |
+
"auxiliary_info": {
|
234 |
+
"multiple_objects": {
|
235 |
+
"object": "broccoli and backpack"
|
236 |
+
}
|
237 |
+
}
|
238 |
+
},
|
239 |
+
"27_a_refrigerator_and_skis.mp4": {
|
240 |
+
"prompt_en": "a refrigerator and skis",
|
241 |
+
"dimension": [
|
242 |
+
"multiple_objects"
|
243 |
+
],
|
244 |
+
"auxiliary_info": {
|
245 |
+
"multiple_objects": {
|
246 |
+
"object": "refrigerator and skis"
|
247 |
+
}
|
248 |
+
}
|
249 |
+
},
|
250 |
+
"28_A_person_is_riding_a_bike.mp4": {
|
251 |
+
"prompt_en": "A person is riding a bike",
|
252 |
+
"dimension": [
|
253 |
+
"human_action"
|
254 |
+
]
|
255 |
+
},
|
256 |
+
"29_A_person_is_marching.mp4": {
|
257 |
+
"prompt_en": "A person is marching",
|
258 |
+
"dimension": [
|
259 |
+
"human_action"
|
260 |
+
]
|
261 |
+
},
|
262 |
+
"30_A_person_is_playing_harp.mp4": {
|
263 |
+
"prompt_en": "A person is playing harp",
|
264 |
+
"dimension": [
|
265 |
+
"human_action"
|
266 |
+
]
|
267 |
+
},
|
268 |
+
"31_A_person_is_wrestling.mp4": {
|
269 |
+
"prompt_en": "A person is wrestling",
|
270 |
+
"dimension": [
|
271 |
+
"human_action"
|
272 |
+
]
|
273 |
+
},
|
274 |
+
"32_A_person_is_sweeping_floor.mp4": {
|
275 |
+
"prompt_en": "A person is sweeping floor",
|
276 |
+
"dimension": [
|
277 |
+
"human_action"
|
278 |
+
]
|
279 |
+
},
|
280 |
+
"33_A_person_is_push_up.mp4": {
|
281 |
+
"prompt_en": "A person is push up",
|
282 |
+
"dimension": [
|
283 |
+
"human_action"
|
284 |
+
]
|
285 |
+
},
|
286 |
+
"34_A_person_is_filling_eyebrows.mp4": {
|
287 |
+
"prompt_en": "A person is filling eyebrows",
|
288 |
+
"dimension": [
|
289 |
+
"human_action"
|
290 |
+
]
|
291 |
+
},
|
292 |
+
"35_A_person_is_air_drumming.mp4": {
|
293 |
+
"prompt_en": "A person is air drumming",
|
294 |
+
"dimension": [
|
295 |
+
"human_action"
|
296 |
+
]
|
297 |
+
},
|
298 |
+
"36_A_person_is_rock_climbing.mp4": {
|
299 |
+
"prompt_en": "A person is rock climbing",
|
300 |
+
"dimension": [
|
301 |
+
"human_action"
|
302 |
+
]
|
303 |
+
},
|
304 |
+
"37_A_person_is_hula_hooping.mp4": {
|
305 |
+
"prompt_en": "A person is hula hooping",
|
306 |
+
"dimension": [
|
307 |
+
"human_action"
|
308 |
+
]
|
309 |
+
},
|
310 |
+
"38_A_person_is_crawling_baby.mp4": {
|
311 |
+
"prompt_en": "A person is crawling baby",
|
312 |
+
"dimension": [
|
313 |
+
"human_action"
|
314 |
+
]
|
315 |
+
},
|
316 |
+
"39_A_person_is_motorcycling.mp4": {
|
317 |
+
"prompt_en": "A person is motorcycling",
|
318 |
+
"dimension": [
|
319 |
+
"human_action"
|
320 |
+
]
|
321 |
+
},
|
322 |
+
"40_A_person_is_riding_or_walking_with_horse.mp4": {
|
323 |
+
"prompt_en": "A person is riding or walking with horse",
|
324 |
+
"dimension": [
|
325 |
+
"human_action"
|
326 |
+
]
|
327 |
+
},
|
328 |
+
"41_A_person_is_using_computer.mp4": {
|
329 |
+
"prompt_en": "A person is using computer",
|
330 |
+
"dimension": [
|
331 |
+
"human_action"
|
332 |
+
]
|
333 |
+
},
|
334 |
+
"42_A_person_is_arranging_flowers.mp4": {
|
335 |
+
"prompt_en": "A person is arranging flowers",
|
336 |
+
"dimension": [
|
337 |
+
"human_action"
|
338 |
+
]
|
339 |
+
},
|
340 |
+
"43_A_person_is_ice_skating.mp4": {
|
341 |
+
"prompt_en": "A person is ice skating",
|
342 |
+
"dimension": [
|
343 |
+
"human_action"
|
344 |
+
]
|
345 |
+
},
|
346 |
+
"44_A_person_is_barbequing.mp4": {
|
347 |
+
"prompt_en": "A person is barbequing",
|
348 |
+
"dimension": [
|
349 |
+
"human_action"
|
350 |
+
]
|
351 |
+
},
|
352 |
+
"45_a_person_swimming_in_ocean.mp4": {
|
353 |
+
"prompt_en": "a person swimming in ocean",
|
354 |
+
"dimension": [
|
355 |
+
"subject_consistency",
|
356 |
+
"dynamic_degree",
|
357 |
+
"motion_smoothness"
|
358 |
+
]
|
359 |
+
},
|
360 |
+
"46_a_car_turning_a_corner.mp4": {
|
361 |
+
"prompt_en": "a car turning a corner",
|
362 |
+
"dimension": [
|
363 |
+
"subject_consistency",
|
364 |
+
"dynamic_degree",
|
365 |
+
"motion_smoothness"
|
366 |
+
]
|
367 |
+
},
|
368 |
+
"47_a_dog_enjoying_a_peaceful_walk.mp4": {
|
369 |
+
"prompt_en": "a dog enjoying a peaceful walk",
|
370 |
+
"dimension": [
|
371 |
+
"subject_consistency",
|
372 |
+
"dynamic_degree",
|
373 |
+
"motion_smoothness"
|
374 |
+
]
|
375 |
+
},
|
376 |
+
"48_a_dog_playing_in_park.mp4": {
|
377 |
+
"prompt_en": "a dog playing in park",
|
378 |
+
"dimension": [
|
379 |
+
"subject_consistency",
|
380 |
+
"dynamic_degree",
|
381 |
+
"motion_smoothness"
|
382 |
+
]
|
383 |
+
},
|
384 |
+
"49_a_horse_galloping_across_an_open_field.mp4": {
|
385 |
+
"prompt_en": "a horse galloping across an open field",
|
386 |
+
"dimension": [
|
387 |
+
"subject_consistency",
|
388 |
+
"dynamic_degree",
|
389 |
+
"motion_smoothness"
|
390 |
+
]
|
391 |
+
},
|
392 |
+
"50_a_sheep_bending_down_to_drink_water_from_a_river.mp4": {
|
393 |
+
"prompt_en": "a sheep bending down to drink water from a river",
|
394 |
+
"dimension": [
|
395 |
+
"subject_consistency",
|
396 |
+
"dynamic_degree",
|
397 |
+
"motion_smoothness"
|
398 |
+
]
|
399 |
+
},
|
400 |
+
"51_a_cow_bending_down_to_drink_water_from_a_river.mp4": {
|
401 |
+
"prompt_en": "a cow bending down to drink water from a river",
|
402 |
+
"dimension": [
|
403 |
+
"subject_consistency",
|
404 |
+
"dynamic_degree",
|
405 |
+
"motion_smoothness"
|
406 |
+
]
|
407 |
+
},
|
408 |
+
"52_a_cow_running_to_join_a_herd_of_its_kind.mp4": {
|
409 |
+
"prompt_en": "a cow running to join a herd of its kind",
|
410 |
+
"dimension": [
|
411 |
+
"subject_consistency",
|
412 |
+
"dynamic_degree",
|
413 |
+
"motion_smoothness"
|
414 |
+
]
|
415 |
+
},
|
416 |
+
"53_a_car_slowing_down_to_stop.mp4": {
|
417 |
+
"prompt_en": "a car slowing down to stop",
|
418 |
+
"dimension": [
|
419 |
+
"subject_consistency",
|
420 |
+
"dynamic_degree",
|
421 |
+
"motion_smoothness"
|
422 |
+
]
|
423 |
+
},
|
424 |
+
"54_a_car_accelerating_to_gain_speed.mp4": {
|
425 |
+
"prompt_en": "a car accelerating to gain speed",
|
426 |
+
"dimension": [
|
427 |
+
"subject_consistency",
|
428 |
+
"dynamic_degree",
|
429 |
+
"motion_smoothness"
|
430 |
+
]
|
431 |
+
},
|
432 |
+
"55_a_motorcycle_slowing_down_to_stop.mp4": {
|
433 |
+
"prompt_en": "a motorcycle slowing down to stop",
|
434 |
+
"dimension": [
|
435 |
+
"subject_consistency",
|
436 |
+
"dynamic_degree",
|
437 |
+
"motion_smoothness"
|
438 |
+
]
|
439 |
+
},
|
440 |
+
"56_a_bus_turning_a_corner.mp4": {
|
441 |
+
"prompt_en": "a bus turning a corner",
|
442 |
+
"dimension": [
|
443 |
+
"subject_consistency",
|
444 |
+
"dynamic_degree",
|
445 |
+
"motion_smoothness"
|
446 |
+
]
|
447 |
+
},
|
448 |
+
"57_a_bird_soaring_gracefully_in_the_sky.mp4": {
|
449 |
+
"prompt_en": "a bird soaring gracefully in the sky",
|
450 |
+
"dimension": [
|
451 |
+
"subject_consistency",
|
452 |
+
"dynamic_degree",
|
453 |
+
"motion_smoothness"
|
454 |
+
]
|
455 |
+
},
|
456 |
+
"58_a_dog_enjoying_a_peaceful_walk.mp4": {
|
457 |
+
"prompt_en": "a dog enjoying a peaceful walk",
|
458 |
+
"dimension": [
|
459 |
+
"subject_consistency",
|
460 |
+
"dynamic_degree",
|
461 |
+
"motion_smoothness"
|
462 |
+
]
|
463 |
+
},
|
464 |
+
"59_a_dog_playing_in_park.mp4": {
|
465 |
+
"prompt_en": "a dog playing in park",
|
466 |
+
"dimension": [
|
467 |
+
"subject_consistency",
|
468 |
+
"dynamic_degree",
|
469 |
+
"motion_smoothness"
|
470 |
+
]
|
471 |
+
},
|
472 |
+
"60_a_dog_drinking_water.mp4": {
|
473 |
+
"prompt_en": "a dog drinking water",
|
474 |
+
"dimension": [
|
475 |
+
"subject_consistency",
|
476 |
+
"dynamic_degree",
|
477 |
+
"motion_smoothness"
|
478 |
+
]
|
479 |
+
},
|
480 |
+
"61_a_horse_bending_down_to_drink_water_from_a_river.mp4": {
|
481 |
+
"prompt_en": "a horse bending down to drink water from a river",
|
482 |
+
"dimension": [
|
483 |
+
"subject_consistency",
|
484 |
+
"dynamic_degree",
|
485 |
+
"motion_smoothness"
|
486 |
+
]
|
487 |
+
},
|
488 |
+
"62_a_horse_galloping_across_an_open_field.mp4": {
|
489 |
+
"prompt_en": "a horse galloping across an open field",
|
490 |
+
"dimension": [
|
491 |
+
"subject_consistency",
|
492 |
+
"dynamic_degree",
|
493 |
+
"motion_smoothness"
|
494 |
+
]
|
495 |
+
},
|
496 |
+
"63_a_bear_sniffing_the_air_for_scents_of_food.mp4": {
|
497 |
+
"prompt_en": "a bear sniffing the air for scents of food",
|
498 |
+
"dimension": [
|
499 |
+
"subject_consistency",
|
500 |
+
"dynamic_degree",
|
501 |
+
"motion_smoothness"
|
502 |
+
]
|
503 |
+
},
|
504 |
+
"64_a_zebra_taking_a_peaceful_walk.mp4": {
|
505 |
+
"prompt_en": "a zebra taking a peaceful walk",
|
506 |
+
"dimension": [
|
507 |
+
"subject_consistency",
|
508 |
+
"dynamic_degree",
|
509 |
+
"motion_smoothness"
|
510 |
+
]
|
511 |
+
},
|
512 |
+
"65_a_person_eating_a_burger.mp4": {
|
513 |
+
"prompt_en": "a person eating a burger",
|
514 |
+
"dimension": [
|
515 |
+
"subject_consistency",
|
516 |
+
"dynamic_degree",
|
517 |
+
"motion_smoothness"
|
518 |
+
]
|
519 |
+
},
|
520 |
+
"66_a_car_stuck_in_traffic_during_rush_hour.mp4": {
|
521 |
+
"prompt_en": "a car stuck in traffic during rush hour",
|
522 |
+
"dimension": [
|
523 |
+
"subject_consistency",
|
524 |
+
"dynamic_degree",
|
525 |
+
"motion_smoothness"
|
526 |
+
]
|
527 |
+
},
|
528 |
+
"67_a_motorcycle_turning_a_corner.mp4": {
|
529 |
+
"prompt_en": "a motorcycle turning a corner",
|
530 |
+
"dimension": [
|
531 |
+
"subject_consistency",
|
532 |
+
"dynamic_degree",
|
533 |
+
"motion_smoothness"
|
534 |
+
]
|
535 |
+
},
|
536 |
+
"68_an_airplane_taking_off.mp4": {
|
537 |
+
"prompt_en": "an airplane taking off",
|
538 |
+
"dimension": [
|
539 |
+
"subject_consistency",
|
540 |
+
"dynamic_degree",
|
541 |
+
"motion_smoothness"
|
542 |
+
]
|
543 |
+
},
|
544 |
+
"69_a_truck_anchored_in_a_tranquil_bay.mp4": {
|
545 |
+
"prompt_en": "a truck anchored in a tranquil bay",
|
546 |
+
"dimension": [
|
547 |
+
"subject_consistency",
|
548 |
+
"dynamic_degree",
|
549 |
+
"motion_smoothness"
|
550 |
+
]
|
551 |
+
},
|
552 |
+
"70_a_truck_slowing_down_to_stop.mp4": {
|
553 |
+
"prompt_en": "a truck slowing down to stop",
|
554 |
+
"dimension": [
|
555 |
+
"subject_consistency",
|
556 |
+
"dynamic_degree",
|
557 |
+
"motion_smoothness"
|
558 |
+
]
|
559 |
+
},
|
560 |
+
"71_a_bird_building_a_nest_from_twigs_and_leaves.mp4": {
|
561 |
+
"prompt_en": "a bird building a nest from twigs and leaves",
|
562 |
+
"dimension": [
|
563 |
+
"subject_consistency",
|
564 |
+
"dynamic_degree",
|
565 |
+
"motion_smoothness"
|
566 |
+
]
|
567 |
+
},
|
568 |
+
"72_a_bird_flying_over_a_snowy_forest.mp4": {
|
569 |
+
"prompt_en": "a bird flying over a snowy forest",
|
570 |
+
"dimension": [
|
571 |
+
"subject_consistency",
|
572 |
+
"dynamic_degree",
|
573 |
+
"motion_smoothness"
|
574 |
+
]
|
575 |
+
},
|
576 |
+
"73_a_zebra_taking_a_peaceful_walk.mp4": {
|
577 |
+
"prompt_en": "a zebra taking a peaceful walk",
|
578 |
+
"dimension": [
|
579 |
+
"subject_consistency",
|
580 |
+
"dynamic_degree",
|
581 |
+
"motion_smoothness"
|
582 |
+
]
|
583 |
+
},
|
584 |
+
"74_a_train.mp4": {
|
585 |
+
"prompt_en": "a train",
|
586 |
+
"dimension": [
|
587 |
+
"object_class"
|
588 |
+
],
|
589 |
+
"auxiliary_info": {
|
590 |
+
"object_class": {
|
591 |
+
"object": "train"
|
592 |
+
}
|
593 |
+
}
|
594 |
+
},
|
595 |
+
"75_a_cat.mp4": {
|
596 |
+
"prompt_en": "a cat",
|
597 |
+
"dimension": [
|
598 |
+
"object_class"
|
599 |
+
],
|
600 |
+
"auxiliary_info": {
|
601 |
+
"object_class": {
|
602 |
+
"object": "cat"
|
603 |
+
}
|
604 |
+
}
|
605 |
+
},
|
606 |
+
"76_an_elephant.mp4": {
|
607 |
+
"prompt_en": "an elephant",
|
608 |
+
"dimension": [
|
609 |
+
"object_class"
|
610 |
+
],
|
611 |
+
"auxiliary_info": {
|
612 |
+
"object_class": {
|
613 |
+
"object": "elephant"
|
614 |
+
}
|
615 |
+
}
|
616 |
+
},
|
617 |
+
"77_a_suitcase.mp4": {
|
618 |
+
"prompt_en": "a suitcase",
|
619 |
+
"dimension": [
|
620 |
+
"object_class"
|
621 |
+
],
|
622 |
+
"auxiliary_info": {
|
623 |
+
"object_class": {
|
624 |
+
"object": "suitcase"
|
625 |
+
}
|
626 |
+
}
|
627 |
+
},
|
628 |
+
"78_an_orange.mp4": {
|
629 |
+
"prompt_en": "an orange",
|
630 |
+
"dimension": [
|
631 |
+
"object_class"
|
632 |
+
],
|
633 |
+
"auxiliary_info": {
|
634 |
+
"object_class": {
|
635 |
+
"object": "orange"
|
636 |
+
}
|
637 |
+
}
|
638 |
+
},
|
639 |
+
"79_a_hot_dog.mp4": {
|
640 |
+
"prompt_en": "a hot dog",
|
641 |
+
"dimension": [
|
642 |
+
"object_class"
|
643 |
+
],
|
644 |
+
"auxiliary_info": {
|
645 |
+
"object_class": {
|
646 |
+
"object": "hot dog"
|
647 |
+
}
|
648 |
+
}
|
649 |
+
},
|
650 |
+
"80_a_keyboard.mp4": {
|
651 |
+
"prompt_en": "a keyboard",
|
652 |
+
"dimension": [
|
653 |
+
"object_class"
|
654 |
+
],
|
655 |
+
"auxiliary_info": {
|
656 |
+
"object_class": {
|
657 |
+
"object": "keyboard"
|
658 |
+
}
|
659 |
+
}
|
660 |
+
},
|
661 |
+
"81_a_sink.mp4": {
|
662 |
+
"prompt_en": "a sink",
|
663 |
+
"dimension": [
|
664 |
+
"object_class"
|
665 |
+
],
|
666 |
+
"auxiliary_info": {
|
667 |
+
"object_class": {
|
668 |
+
"object": "sink"
|
669 |
+
}
|
670 |
+
}
|
671 |
+
},
|
672 |
+
"82_a_toothbrush.mp4": {
|
673 |
+
"prompt_en": "a toothbrush",
|
674 |
+
"dimension": [
|
675 |
+
"object_class"
|
676 |
+
],
|
677 |
+
"auxiliary_info": {
|
678 |
+
"object_class": {
|
679 |
+
"object": "toothbrush"
|
680 |
+
}
|
681 |
+
}
|
682 |
+
},
|
683 |
+
"83_a_red_bicycle.mp4": {
|
684 |
+
"prompt_en": "a red bicycle",
|
685 |
+
"dimension": [
|
686 |
+
"color"
|
687 |
+
],
|
688 |
+
"auxiliary_info": {
|
689 |
+
"color": {
|
690 |
+
"color": "red"
|
691 |
+
}
|
692 |
+
}
|
693 |
+
},
|
694 |
+
"84_a_green_bicycle.mp4": {
|
695 |
+
"prompt_en": "a green bicycle",
|
696 |
+
"dimension": [
|
697 |
+
"color"
|
698 |
+
],
|
699 |
+
"auxiliary_info": {
|
700 |
+
"color": {
|
701 |
+
"color": "green"
|
702 |
+
}
|
703 |
+
}
|
704 |
+
},
|
705 |
+
"85_a_yellow_bicycle.mp4": {
|
706 |
+
"prompt_en": "a yellow bicycle",
|
707 |
+
"dimension": [
|
708 |
+
"color"
|
709 |
+
],
|
710 |
+
"auxiliary_info": {
|
711 |
+
"color": {
|
712 |
+
"color": "yellow"
|
713 |
+
}
|
714 |
+
}
|
715 |
+
},
|
716 |
+
"86_a_black_bicycle.mp4": {
|
717 |
+
"prompt_en": "a black bicycle",
|
718 |
+
"dimension": [
|
719 |
+
"color"
|
720 |
+
],
|
721 |
+
"auxiliary_info": {
|
722 |
+
"color": {
|
723 |
+
"color": "black"
|
724 |
+
}
|
725 |
+
}
|
726 |
+
},
|
727 |
+
"87_a_purple_bird.mp4": {
|
728 |
+
"prompt_en": "a purple bird",
|
729 |
+
"dimension": [
|
730 |
+
"color"
|
731 |
+
],
|
732 |
+
"auxiliary_info": {
|
733 |
+
"color": {
|
734 |
+
"color": "purple"
|
735 |
+
}
|
736 |
+
}
|
737 |
+
},
|
738 |
+
"88_a_yellow_cat.mp4": {
|
739 |
+
"prompt_en": "a yellow cat",
|
740 |
+
"dimension": [
|
741 |
+
"color"
|
742 |
+
],
|
743 |
+
"auxiliary_info": {
|
744 |
+
"color": {
|
745 |
+
"color": "yellow"
|
746 |
+
}
|
747 |
+
}
|
748 |
+
},
|
749 |
+
"89_a_pink_suitcase.mp4": {
|
750 |
+
"prompt_en": "a pink suitcase",
|
751 |
+
"dimension": [
|
752 |
+
"color"
|
753 |
+
],
|
754 |
+
"auxiliary_info": {
|
755 |
+
"color": {
|
756 |
+
"color": "pink"
|
757 |
+
}
|
758 |
+
}
|
759 |
+
},
|
760 |
+
"90_a_purple_chair.mp4": {
|
761 |
+
"prompt_en": "a purple chair",
|
762 |
+
"dimension": [
|
763 |
+
"color"
|
764 |
+
],
|
765 |
+
"auxiliary_info": {
|
766 |
+
"color": {
|
767 |
+
"color": "purple"
|
768 |
+
}
|
769 |
+
}
|
770 |
+
},
|
771 |
+
"91_a_green_clock.mp4": {
|
772 |
+
"prompt_en": "a green clock",
|
773 |
+
"dimension": [
|
774 |
+
"color"
|
775 |
+
],
|
776 |
+
"auxiliary_info": {
|
777 |
+
"color": {
|
778 |
+
"color": "green"
|
779 |
+
}
|
780 |
+
}
|
781 |
+
},
|
782 |
+
"92_a_yellow_clock.mp4": {
|
783 |
+
"prompt_en": "a yellow clock",
|
784 |
+
"dimension": [
|
785 |
+
"color"
|
786 |
+
],
|
787 |
+
"auxiliary_info": {
|
788 |
+
"color": {
|
789 |
+
"color": "yellow"
|
790 |
+
}
|
791 |
+
}
|
792 |
+
},
|
793 |
+
"93_a_purple_clock.mp4": {
|
794 |
+
"prompt_en": "a purple clock",
|
795 |
+
"dimension": [
|
796 |
+
"color"
|
797 |
+
],
|
798 |
+
"auxiliary_info": {
|
799 |
+
"color": {
|
800 |
+
"color": "purple"
|
801 |
+
}
|
802 |
+
}
|
803 |
+
},
|
804 |
+
"94_a_green_vase.mp4": {
|
805 |
+
"prompt_en": "a green vase",
|
806 |
+
"dimension": [
|
807 |
+
"color"
|
808 |
+
],
|
809 |
+
"auxiliary_info": {
|
810 |
+
"color": {
|
811 |
+
"color": "green"
|
812 |
+
}
|
813 |
+
}
|
814 |
+
},
|
815 |
+
"95_The_bund_Shanghai,_watercolor_painting.mp4": {
|
816 |
+
"prompt_en": "The bund Shanghai, watercolor painting",
|
817 |
+
"dimension": [
|
818 |
+
"appearance_style"
|
819 |
+
],
|
820 |
+
"auxiliary_info": {
|
821 |
+
"appearance_style": {
|
822 |
+
"appearance_style": "watercolor painting"
|
823 |
+
}
|
824 |
+
}
|
825 |
+
},
|
826 |
+
"96_a_shark_is_swimming_in_the_ocean_by_Hokusai,_in_the_style_of_Ukiyo.mp4": {
|
827 |
+
"prompt_en": "a shark is swimming in the ocean by Hokusai, in the style of Ukiyo",
|
828 |
+
"dimension": [
|
829 |
+
"appearance_style"
|
830 |
+
],
|
831 |
+
"auxiliary_info": {
|
832 |
+
"appearance_style": {
|
833 |
+
"appearance_style": "by Hokusai, in the style of Ukiyo"
|
834 |
+
}
|
835 |
+
}
|
836 |
+
},
|
837 |
+
"97_a_shark_is_swimming_in_the_ocean,_pixel_art.mp4": {
|
838 |
+
"prompt_en": "a shark is swimming in the ocean, pixel art",
|
839 |
+
"dimension": [
|
840 |
+
"appearance_style"
|
841 |
+
],
|
842 |
+
"auxiliary_info": {
|
843 |
+
"appearance_style": {
|
844 |
+
"appearance_style": "pixel art"
|
845 |
+
}
|
846 |
+
}
|
847 |
+
},
|
848 |
+
"98_Gwen_Stacy_reading_a_book,_pixel_art.mp4": {
|
849 |
+
"prompt_en": "Gwen Stacy reading a book, pixel art",
|
850 |
+
"dimension": [
|
851 |
+
"appearance_style"
|
852 |
+
],
|
853 |
+
"auxiliary_info": {
|
854 |
+
"appearance_style": {
|
855 |
+
"appearance_style": "pixel art"
|
856 |
+
}
|
857 |
+
}
|
858 |
+
},
|
859 |
+
"99_A_boat_sailing_leisurely_along_the_Seine_River_with_the_Eiffel_Tower_in_background,_pixel_art.mp4": {
|
860 |
+
"prompt_en": "A boat sailing leisurely along the Seine River with the Eiffel Tower in background, pixel art",
|
861 |
+
"dimension": [
|
862 |
+
"appearance_style"
|
863 |
+
],
|
864 |
+
"auxiliary_info": {
|
865 |
+
"appearance_style": {
|
866 |
+
"appearance_style": "pixel art"
|
867 |
+
}
|
868 |
+
}
|
869 |
+
},
|
870 |
+
"100_A_couple_in_formal_evening_wear_going_home_get_caught_in_a_heavy_downpour_with_umbrellas_by_Hokusai,_in_the_style_of_Ukiyo.mp4": {
|
871 |
+
"prompt_en": "A couple in formal evening wear going home get caught in a heavy downpour with umbrellas by Hokusai, in the style of Ukiyo",
|
872 |
+
"dimension": [
|
873 |
+
"appearance_style"
|
874 |
+
],
|
875 |
+
"auxiliary_info": {
|
876 |
+
"appearance_style": {
|
877 |
+
"appearance_style": "by Hokusai, in the style of Ukiyo"
|
878 |
+
}
|
879 |
+
}
|
880 |
+
},
|
881 |
+
"101_An_astronaut_flying_in_space,_Van_Gogh_style.mp4": {
|
882 |
+
"prompt_en": "An astronaut flying in space, Van Gogh style",
|
883 |
+
"dimension": [
|
884 |
+
"appearance_style"
|
885 |
+
],
|
886 |
+
"auxiliary_info": {
|
887 |
+
"appearance_style": {
|
888 |
+
"appearance_style": "Van Gogh style"
|
889 |
+
}
|
890 |
+
}
|
891 |
+
},
|
892 |
+
"102_An_astronaut_flying_in_space,_oil_painting.mp4": {
|
893 |
+
"prompt_en": "An astronaut flying in space, oil painting",
|
894 |
+
"dimension": [
|
895 |
+
"appearance_style"
|
896 |
+
],
|
897 |
+
"auxiliary_info": {
|
898 |
+
"appearance_style": {
|
899 |
+
"appearance_style": "oil painting"
|
900 |
+
}
|
901 |
+
}
|
902 |
+
},
|
903 |
+
"103_An_astronaut_flying_in_space_by_Hokusai,_in_the_style_of_Ukiyo.mp4": {
|
904 |
+
"prompt_en": "An astronaut flying in space by Hokusai, in the style of Ukiyo",
|
905 |
+
"dimension": [
|
906 |
+
"appearance_style"
|
907 |
+
],
|
908 |
+
"auxiliary_info": {
|
909 |
+
"appearance_style": {
|
910 |
+
"appearance_style": "by Hokusai, in the style of Ukiyo"
|
911 |
+
}
|
912 |
+
}
|
913 |
+
},
|
914 |
+
"104_An_astronaut_flying_in_space,_in_cyberpunk_style.mp4": {
|
915 |
+
"prompt_en": "An astronaut flying in space, in cyberpunk style",
|
916 |
+
"dimension": [
|
917 |
+
"appearance_style"
|
918 |
+
],
|
919 |
+
"auxiliary_info": {
|
920 |
+
"appearance_style": {
|
921 |
+
"appearance_style": "in cyberpunk style"
|
922 |
+
}
|
923 |
+
}
|
924 |
+
},
|
925 |
+
"105_Snow_rocky_mountains_peaks_canyon._snow_blanketed_rocky_mountains_surround_and_shadow_deep_canyons._the_canyons_twist_and_bend_through_the_high_elevated_mountain_peaks,_watercolor_painting.mp4": {
|
926 |
+
"prompt_en": "Snow rocky mountains peaks canyon. snow blanketed rocky mountains surround and shadow deep canyons. the canyons twist and bend through the high elevated mountain peaks, watercolor painting",
|
927 |
+
"dimension": [
|
928 |
+
"appearance_style"
|
929 |
+
],
|
930 |
+
"auxiliary_info": {
|
931 |
+
"appearance_style": {
|
932 |
+
"appearance_style": "watercolor painting"
|
933 |
+
}
|
934 |
+
}
|
935 |
+
},
|
936 |
+
"106_A_beautiful_coastal_beach_in_spring,_waves_lapping_on_sand,_zoom_out.mp4": {
|
937 |
+
"prompt_en": "A beautiful coastal beach in spring, waves lapping on sand, zoom out",
|
938 |
+
"dimension": [
|
939 |
+
"temporal_style"
|
940 |
+
]
|
941 |
+
},
|
942 |
+
"107_A_beautiful_coastal_beach_in_spring,_waves_lapping_on_sand,_pan_right.mp4": {
|
943 |
+
"prompt_en": "A beautiful coastal beach in spring, waves lapping on sand, pan right",
|
944 |
+
"dimension": [
|
945 |
+
"temporal_style"
|
946 |
+
]
|
947 |
+
},
|
948 |
+
"108_A_beautiful_coastal_beach_in_spring,_waves_lapping_on_sand,_tilt_up.mp4": {
|
949 |
+
"prompt_en": "A beautiful coastal beach in spring, waves lapping on sand, tilt up",
|
950 |
+
"dimension": [
|
951 |
+
"temporal_style"
|
952 |
+
]
|
953 |
+
},
|
954 |
+
"109_The_bund_Shanghai,_zoom_out.mp4": {
|
955 |
+
"prompt_en": "The bund Shanghai, zoom out",
|
956 |
+
"dimension": [
|
957 |
+
"temporal_style"
|
958 |
+
]
|
959 |
+
},
|
960 |
+
"110_a_shark_is_swimming_in_the_ocean,_featuring_a_steady_and_smooth_perspective.mp4": {
|
961 |
+
"prompt_en": "a shark is swimming in the ocean, featuring a steady and smooth perspective",
|
962 |
+
"dimension": [
|
963 |
+
"temporal_style"
|
964 |
+
]
|
965 |
+
},
|
966 |
+
"111_A_panda_drinking_coffee_in_a_cafe_in_Paris,_in_super_slow_motion.mp4": {
|
967 |
+
"prompt_en": "A panda drinking coffee in a cafe in Paris, in super slow motion",
|
968 |
+
"dimension": [
|
969 |
+
"temporal_style"
|
970 |
+
]
|
971 |
+
},
|
972 |
+
"112_Gwen_Stacy_reading_a_book,_zoom_out.mp4": {
|
973 |
+
"prompt_en": "Gwen Stacy reading a book, zoom out",
|
974 |
+
"dimension": [
|
975 |
+
"temporal_style"
|
976 |
+
]
|
977 |
+
},
|
978 |
+
"113_Gwen_Stacy_reading_a_book,_featuring_a_steady_and_smooth_perspective.mp4": {
|
979 |
+
"prompt_en": "Gwen Stacy reading a book, featuring a steady and smooth perspective",
|
980 |
+
"dimension": [
|
981 |
+
"temporal_style"
|
982 |
+
]
|
983 |
+
},
|
984 |
+
"114_A_couple_in_formal_evening_wear_going_home_get_caught_in_a_heavy_downpour_with_umbrellas,_tilt_down.mp4": {
|
985 |
+
"prompt_en": "A couple in formal evening wear going home get caught in a heavy downpour with umbrellas, tilt down",
|
986 |
+
"dimension": [
|
987 |
+
"temporal_style"
|
988 |
+
]
|
989 |
+
},
|
990 |
+
"115_Snow_rocky_mountains_peaks_canyon._snow_blanketed_rocky_mountains_surround_and_shadow_deep_canyons._the_canyons_twist_and_bend_through_the_high_elevated_mountain_peaks,_tilt_up.mp4": {
|
991 |
+
"prompt_en": "Snow rocky mountains peaks canyon. snow blanketed rocky mountains surround and shadow deep canyons. the canyons twist and bend through the high elevated mountain peaks, tilt up",
|
992 |
+
"dimension": [
|
993 |
+
"temporal_style"
|
994 |
+
]
|
995 |
+
},
|
996 |
+
"116_Snow_rocky_mountains_peaks_canyon._snow_blanketed_rocky_mountains_surround_and_shadow_deep_canyons._the_canyons_twist_and_bend_through_the_high_elevated_mountain_peaks,_racking_focus.mp4": {
|
997 |
+
"prompt_en": "Snow rocky mountains peaks canyon. snow blanketed rocky mountains surround and shadow deep canyons. the canyons twist and bend through the high elevated mountain peaks, racking focus",
|
998 |
+
"dimension": [
|
999 |
+
"temporal_style"
|
1000 |
+
]
|
1001 |
+
},
|
1002 |
+
"117_Flying_through_fantasy_landscapes..mp4": {
|
1003 |
+
"prompt_en": "Flying through fantasy landscapes.",
|
1004 |
+
"dimension": [
|
1005 |
+
"overall_consistency",
|
1006 |
+
"aesthetic_quality",
|
1007 |
+
"imaging_quality"
|
1008 |
+
]
|
1009 |
+
},
|
1010 |
+
"118_Aerial_panoramic_video_from_a_drone_of_a_fantasy_land..mp4": {
|
1011 |
+
"prompt_en": "Aerial panoramic video from a drone of a fantasy land.",
|
1012 |
+
"dimension": [
|
1013 |
+
"overall_consistency",
|
1014 |
+
"aesthetic_quality",
|
1015 |
+
"imaging_quality"
|
1016 |
+
]
|
1017 |
+
},
|
1018 |
+
"119_Balloon_full_of_water_exploding_in_extreme_slow_motion..mp4": {
|
1019 |
+
"prompt_en": "Balloon full of water exploding in extreme slow motion.",
|
1020 |
+
"dimension": [
|
1021 |
+
"overall_consistency",
|
1022 |
+
"aesthetic_quality",
|
1023 |
+
"imaging_quality"
|
1024 |
+
]
|
1025 |
+
},
|
1026 |
+
"120_Few_big_purple_plums_rotating_on_the_turntable._water_drops_appear_on_the_skin_during_rotation._isolated_on_the_white_background._close-up._macro..mp4": {
|
1027 |
+
"prompt_en": "Few big purple plums rotating on the turntable. water drops appear on the skin during rotation. isolated on the white background. close-up. macro.",
|
1028 |
+
"dimension": [
|
1029 |
+
"overall_consistency",
|
1030 |
+
"aesthetic_quality",
|
1031 |
+
"imaging_quality"
|
1032 |
+
]
|
1033 |
+
},
|
1034 |
+
"121_A_fantasy_landscape.mp4": {
|
1035 |
+
"prompt_en": "A fantasy landscape",
|
1036 |
+
"dimension": [
|
1037 |
+
"overall_consistency",
|
1038 |
+
"aesthetic_quality",
|
1039 |
+
"imaging_quality"
|
1040 |
+
]
|
1041 |
+
},
|
1042 |
+
"122_A_steam_train_moving_on_a_mountainside.mp4": {
|
1043 |
+
"prompt_en": "A steam train moving on a mountainside",
|
1044 |
+
"dimension": [
|
1045 |
+
"overall_consistency",
|
1046 |
+
"aesthetic_quality",
|
1047 |
+
"imaging_quality"
|
1048 |
+
]
|
1049 |
+
},
|
1050 |
+
"123_A_beautiful_coastal_beach_in_spring,_waves_lapping_on_sand_by_Hokusai,_in_the_style_of_Ukiyo.mp4": {
|
1051 |
+
"prompt_en": "A beautiful coastal beach in spring, waves lapping on sand by Hokusai, in the style of Ukiyo",
|
1052 |
+
"dimension": [
|
1053 |
+
"overall_consistency",
|
1054 |
+
"aesthetic_quality",
|
1055 |
+
"imaging_quality"
|
1056 |
+
]
|
1057 |
+
},
|
1058 |
+
"124_A_polar_bear_is_playing_guitar.mp4": {
|
1059 |
+
"prompt_en": "A polar bear is playing guitar",
|
1060 |
+
"dimension": [
|
1061 |
+
"overall_consistency",
|
1062 |
+
"aesthetic_quality",
|
1063 |
+
"imaging_quality"
|
1064 |
+
]
|
1065 |
+
},
|
1066 |
+
"125_An_astronaut_feeding_ducks_on_a_sunny_afternoon,_reflection_from_the_water..mp4": {
|
1067 |
+
"prompt_en": "An astronaut feeding ducks on a sunny afternoon, reflection from the water.",
|
1068 |
+
"dimension": [
|
1069 |
+
"overall_consistency",
|
1070 |
+
"aesthetic_quality",
|
1071 |
+
"imaging_quality"
|
1072 |
+
]
|
1073 |
+
},
|
1074 |
+
"126_Sunset_time_lapse_at_the_beach_with_moving_clouds_and_colors_in_the_sky..mp4": {
|
1075 |
+
"prompt_en": "Sunset time lapse at the beach with moving clouds and colors in the sky.",
|
1076 |
+
"dimension": [
|
1077 |
+
"overall_consistency",
|
1078 |
+
"aesthetic_quality",
|
1079 |
+
"imaging_quality"
|
1080 |
+
]
|
1081 |
+
},
|
1082 |
+
"127_Flying_through_fantasy_landscapes..mp4": {
|
1083 |
+
"prompt_en": "Flying through fantasy landscapes.",
|
1084 |
+
"dimension": [
|
1085 |
+
"overall_consistency",
|
1086 |
+
"aesthetic_quality",
|
1087 |
+
"imaging_quality"
|
1088 |
+
]
|
1089 |
+
},
|
1090 |
+
"128_A_squirrel_eating_a_burger..mp4": {
|
1091 |
+
"prompt_en": "A squirrel eating a burger.",
|
1092 |
+
"dimension": [
|
1093 |
+
"overall_consistency",
|
1094 |
+
"aesthetic_quality",
|
1095 |
+
"imaging_quality"
|
1096 |
+
]
|
1097 |
+
},
|
1098 |
+
"129_A_drone_view_of_celebration_with_Christmas_tree_and_fireworks,_starry_sky_-_background..mp4": {
|
1099 |
+
"prompt_en": "A drone view of celebration with Christmas tree and fireworks, starry sky - background.",
|
1100 |
+
"dimension": [
|
1101 |
+
"overall_consistency",
|
1102 |
+
"aesthetic_quality",
|
1103 |
+
"imaging_quality"
|
1104 |
+
]
|
1105 |
+
},
|
1106 |
+
"130_Robot_dancing_in_Times_Square..mp4": {
|
1107 |
+
"prompt_en": "Robot dancing in Times Square.",
|
1108 |
+
"dimension": [
|
1109 |
+
"overall_consistency",
|
1110 |
+
"aesthetic_quality",
|
1111 |
+
"imaging_quality"
|
1112 |
+
]
|
1113 |
+
},
|
1114 |
+
"131_Few_big_purple_plums_rotating_on_the_turntable._water_drops_appear_on_the_skin_during_rotation._isolated_on_the_white_background._close-up._macro..mp4": {
|
1115 |
+
"prompt_en": "Few big purple plums rotating on the turntable. water drops appear on the skin during rotation. isolated on the white background. close-up. macro.",
|
1116 |
+
"dimension": [
|
1117 |
+
"overall_consistency",
|
1118 |
+
"aesthetic_quality",
|
1119 |
+
"imaging_quality"
|
1120 |
+
]
|
1121 |
+
},
|
1122 |
+
"132_Ashtray_full_of_butts_on_table,_smoke_flowing_on_black_background,_close-up.mp4": {
|
1123 |
+
"prompt_en": "Ashtray full of butts on table, smoke flowing on black background, close-up",
|
1124 |
+
"dimension": [
|
1125 |
+
"overall_consistency",
|
1126 |
+
"aesthetic_quality",
|
1127 |
+
"imaging_quality"
|
1128 |
+
]
|
1129 |
+
},
|
1130 |
+
"133_A_future_where_humans_have_achieved_teleportation_technology.mp4": {
|
1131 |
+
"prompt_en": "A future where humans have achieved teleportation technology",
|
1132 |
+
"dimension": [
|
1133 |
+
"overall_consistency",
|
1134 |
+
"aesthetic_quality",
|
1135 |
+
"imaging_quality"
|
1136 |
+
]
|
1137 |
+
},
|
1138 |
+
"134_Gwen_Stacy_reading_a_book.mp4": {
|
1139 |
+
"prompt_en": "Gwen Stacy reading a book",
|
1140 |
+
"dimension": [
|
1141 |
+
"overall_consistency",
|
1142 |
+
"aesthetic_quality",
|
1143 |
+
"imaging_quality"
|
1144 |
+
]
|
1145 |
+
},
|
1146 |
+
"135_Yoda_playing_guitar_on_the_stage.mp4": {
|
1147 |
+
"prompt_en": "Yoda playing guitar on the stage",
|
1148 |
+
"dimension": [
|
1149 |
+
"overall_consistency",
|
1150 |
+
"aesthetic_quality",
|
1151 |
+
"imaging_quality"
|
1152 |
+
]
|
1153 |
+
},
|
1154 |
+
"136_A_cat_eating_food_out_of_a_bowl.mp4": {
|
1155 |
+
"prompt_en": "A cat eating food out of a bowl",
|
1156 |
+
"dimension": [
|
1157 |
+
"overall_consistency",
|
1158 |
+
"aesthetic_quality",
|
1159 |
+
"imaging_quality"
|
1160 |
+
]
|
1161 |
+
},
|
1162 |
+
"137_A_cute_raccoon_playing_guitar_in_a_boat_on_the_ocean.mp4": {
|
1163 |
+
"prompt_en": "A cute raccoon playing guitar in a boat on the ocean",
|
1164 |
+
"dimension": [
|
1165 |
+
"overall_consistency",
|
1166 |
+
"aesthetic_quality",
|
1167 |
+
"imaging_quality"
|
1168 |
+
]
|
1169 |
+
},
|
1170 |
+
"138_A_happy_fuzzy_panda_playing_guitar_nearby_a_campfire,_snow_mountain_in_the_background.mp4": {
|
1171 |
+
"prompt_en": "A happy fuzzy panda playing guitar nearby a campfire, snow mountain in the background",
|
1172 |
+
"dimension": [
|
1173 |
+
"overall_consistency",
|
1174 |
+
"aesthetic_quality",
|
1175 |
+
"imaging_quality"
|
1176 |
+
]
|
1177 |
+
},
|
1178 |
+
"139_A_polar_bear_is_playing_guitar.mp4": {
|
1179 |
+
"prompt_en": "A polar bear is playing guitar",
|
1180 |
+
"dimension": [
|
1181 |
+
"overall_consistency",
|
1182 |
+
"aesthetic_quality",
|
1183 |
+
"imaging_quality"
|
1184 |
+
]
|
1185 |
+
},
|
1186 |
+
"140_A_bigfoot_walking_in_the_snowstorm..mp4": {
|
1187 |
+
"prompt_en": "A bigfoot walking in the snowstorm.",
|
1188 |
+
"dimension": [
|
1189 |
+
"overall_consistency",
|
1190 |
+
"aesthetic_quality",
|
1191 |
+
"imaging_quality"
|
1192 |
+
]
|
1193 |
+
},
|
1194 |
+
"141_A_drone_view_of_celebration_with_Christmas_tree_and_fireworks,_starry_sky_-_background..mp4": {
|
1195 |
+
"prompt_en": "A drone view of celebration with Christmas tree and fireworks, starry sky - background.",
|
1196 |
+
"dimension": [
|
1197 |
+
"overall_consistency",
|
1198 |
+
"aesthetic_quality",
|
1199 |
+
"imaging_quality"
|
1200 |
+
]
|
1201 |
+
},
|
1202 |
+
"142_An_astronaut_is_riding_a_horse_in_the_space_in_a_photorealistic_style..mp4": {
|
1203 |
+
"prompt_en": "An astronaut is riding a horse in the space in a photorealistic style.",
|
1204 |
+
"dimension": [
|
1205 |
+
"overall_consistency",
|
1206 |
+
"aesthetic_quality",
|
1207 |
+
"imaging_quality"
|
1208 |
+
]
|
1209 |
+
},
|
1210 |
+
"143_Sewing_machine,_old_sewing_machine_working..mp4": {
|
1211 |
+
"prompt_en": "Sewing machine, old sewing machine working.",
|
1212 |
+
"dimension": [
|
1213 |
+
"overall_consistency",
|
1214 |
+
"aesthetic_quality",
|
1215 |
+
"imaging_quality"
|
1216 |
+
]
|
1217 |
+
},
|
1218 |
+
"144_A_boat_sailing_leisurely_along_the_Seine_River_with_the_Eiffel_Tower_in_background_by_Vincent_van_Gogh.mp4": {
|
1219 |
+
"prompt_en": "A boat sailing leisurely along the Seine River with the Eiffel Tower in background by Vincent van Gogh",
|
1220 |
+
"dimension": [
|
1221 |
+
"overall_consistency",
|
1222 |
+
"aesthetic_quality",
|
1223 |
+
"imaging_quality"
|
1224 |
+
]
|
1225 |
+
},
|
1226 |
+
"145_A_Mars_rover_moving_on_Mars.mp4": {
|
1227 |
+
"prompt_en": "A Mars rover moving on Mars",
|
1228 |
+
"dimension": [
|
1229 |
+
"overall_consistency",
|
1230 |
+
"aesthetic_quality",
|
1231 |
+
"imaging_quality"
|
1232 |
+
]
|
1233 |
+
},
|
1234 |
+
"146_A_super_cool_giant_robot_in_Cyberpunk_Beijing.mp4": {
|
1235 |
+
"prompt_en": "A super cool giant robot in Cyberpunk Beijing",
|
1236 |
+
"dimension": [
|
1237 |
+
"overall_consistency",
|
1238 |
+
"aesthetic_quality",
|
1239 |
+
"imaging_quality"
|
1240 |
+
]
|
1241 |
+
},
|
1242 |
+
"147_Iron_Man_flying_in_the_sky.mp4": {
|
1243 |
+
"prompt_en": "Iron Man flying in the sky",
|
1244 |
+
"dimension": [
|
1245 |
+
"overall_consistency",
|
1246 |
+
"aesthetic_quality",
|
1247 |
+
"imaging_quality"
|
1248 |
+
]
|
1249 |
+
},
|
1250 |
+
"148_A_beautiful_coastal_beach_in_spring,_waves_lapping_on_sand_by_Hokusai,_in_the_style_of_Ukiyo.mp4": {
|
1251 |
+
"prompt_en": "A beautiful coastal beach in spring, waves lapping on sand by Hokusai, in the style of Ukiyo",
|
1252 |
+
"dimension": [
|
1253 |
+
"overall_consistency",
|
1254 |
+
"aesthetic_quality",
|
1255 |
+
"imaging_quality"
|
1256 |
+
]
|
1257 |
+
},
|
1258 |
+
"149_A_cat_eating_food_out_of_a_bowl.mp4": {
|
1259 |
+
"prompt_en": "A cat eating food out of a bowl",
|
1260 |
+
"dimension": [
|
1261 |
+
"overall_consistency",
|
1262 |
+
"aesthetic_quality",
|
1263 |
+
"imaging_quality"
|
1264 |
+
]
|
1265 |
+
},
|
1266 |
+
"150_A_cute_fluffy_panda_eating_Chinese_food_in_a_restaurant.mp4": {
|
1267 |
+
"prompt_en": "A cute fluffy panda eating Chinese food in a restaurant",
|
1268 |
+
"dimension": [
|
1269 |
+
"overall_consistency",
|
1270 |
+
"aesthetic_quality",
|
1271 |
+
"imaging_quality"
|
1272 |
+
]
|
1273 |
+
},
|
1274 |
+
"151_A_cute_raccoon_playing_guitar_in_a_boat_on_the_ocean.mp4": {
|
1275 |
+
"prompt_en": "A cute raccoon playing guitar in a boat on the ocean",
|
1276 |
+
"dimension": [
|
1277 |
+
"overall_consistency",
|
1278 |
+
"aesthetic_quality",
|
1279 |
+
"imaging_quality"
|
1280 |
+
]
|
1281 |
+
},
|
1282 |
+
"152_Clown_fish_swimming_through_the_coral_reef.mp4": {
|
1283 |
+
"prompt_en": "Clown fish swimming through the coral reef",
|
1284 |
+
"dimension": [
|
1285 |
+
"overall_consistency",
|
1286 |
+
"aesthetic_quality",
|
1287 |
+
"imaging_quality"
|
1288 |
+
]
|
1289 |
+
},
|
1290 |
+
"153_The_bund_Shanghai,_vibrant_color.mp4": {
|
1291 |
+
"prompt_en": "The bund Shanghai, vibrant color",
|
1292 |
+
"dimension": [
|
1293 |
+
"overall_consistency",
|
1294 |
+
"aesthetic_quality",
|
1295 |
+
"imaging_quality"
|
1296 |
+
]
|
1297 |
+
},
|
1298 |
+
"154_alley.mp4": {
|
1299 |
+
"prompt_en": "alley",
|
1300 |
+
"dimension": [
|
1301 |
+
"scene",
|
1302 |
+
"background_consistency"
|
1303 |
+
],
|
1304 |
+
"auxiliary_info": {
|
1305 |
+
"scene": {
|
1306 |
+
"scene": {
|
1307 |
+
"scene": "alley"
|
1308 |
+
}
|
1309 |
+
}
|
1310 |
+
}
|
1311 |
+
},
|
1312 |
+
"155_bridge.mp4": {
|
1313 |
+
"prompt_en": "bridge",
|
1314 |
+
"dimension": [
|
1315 |
+
"scene",
|
1316 |
+
"background_consistency"
|
1317 |
+
],
|
1318 |
+
"auxiliary_info": {
|
1319 |
+
"scene": {
|
1320 |
+
"scene": {
|
1321 |
+
"scene": "bridge"
|
1322 |
+
}
|
1323 |
+
}
|
1324 |
+
}
|
1325 |
+
},
|
1326 |
+
"156_botanical_garden.mp4": {
|
1327 |
+
"prompt_en": "botanical garden",
|
1328 |
+
"dimension": [
|
1329 |
+
"scene",
|
1330 |
+
"background_consistency"
|
1331 |
+
],
|
1332 |
+
"auxiliary_info": {
|
1333 |
+
"scene": {
|
1334 |
+
"scene": {
|
1335 |
+
"scene": "botanical garden"
|
1336 |
+
}
|
1337 |
+
}
|
1338 |
+
}
|
1339 |
+
},
|
1340 |
+
"157_campsite.mp4": {
|
1341 |
+
"prompt_en": "campsite",
|
1342 |
+
"dimension": [
|
1343 |
+
"scene",
|
1344 |
+
"background_consistency"
|
1345 |
+
],
|
1346 |
+
"auxiliary_info": {
|
1347 |
+
"scene": {
|
1348 |
+
"scene": {
|
1349 |
+
"scene": "campsite"
|
1350 |
+
}
|
1351 |
+
}
|
1352 |
+
}
|
1353 |
+
},
|
1354 |
+
"158_castle.mp4": {
|
1355 |
+
"prompt_en": "castle",
|
1356 |
+
"dimension": [
|
1357 |
+
"scene",
|
1358 |
+
"background_consistency"
|
1359 |
+
],
|
1360 |
+
"auxiliary_info": {
|
1361 |
+
"scene": {
|
1362 |
+
"scene": {
|
1363 |
+
"scene": "castle"
|
1364 |
+
}
|
1365 |
+
}
|
1366 |
+
}
|
1367 |
+
},
|
1368 |
+
"159_construction_site.mp4": {
|
1369 |
+
"prompt_en": "construction site",
|
1370 |
+
"dimension": [
|
1371 |
+
"scene",
|
1372 |
+
"background_consistency"
|
1373 |
+
],
|
1374 |
+
"auxiliary_info": {
|
1375 |
+
"scene": {
|
1376 |
+
"scene": {
|
1377 |
+
"scene": "construction site"
|
1378 |
+
}
|
1379 |
+
}
|
1380 |
+
}
|
1381 |
+
},
|
1382 |
+
"160_food_court.mp4": {
|
1383 |
+
"prompt_en": "food court",
|
1384 |
+
"dimension": [
|
1385 |
+
"scene",
|
1386 |
+
"background_consistency"
|
1387 |
+
],
|
1388 |
+
"auxiliary_info": {
|
1389 |
+
"scene": {
|
1390 |
+
"scene": {
|
1391 |
+
"scene": "food court"
|
1392 |
+
}
|
1393 |
+
}
|
1394 |
+
}
|
1395 |
+
},
|
1396 |
+
"161_hospital.mp4": {
|
1397 |
+
"prompt_en": "hospital",
|
1398 |
+
"dimension": [
|
1399 |
+
"scene",
|
1400 |
+
"background_consistency"
|
1401 |
+
],
|
1402 |
+
"auxiliary_info": {
|
1403 |
+
"scene": {
|
1404 |
+
"scene": {
|
1405 |
+
"scene": "hospital"
|
1406 |
+
}
|
1407 |
+
}
|
1408 |
+
}
|
1409 |
+
},
|
1410 |
+
"162_industrial_area.mp4": {
|
1411 |
+
"prompt_en": "industrial area",
|
1412 |
+
"dimension": [
|
1413 |
+
"scene",
|
1414 |
+
"background_consistency"
|
1415 |
+
],
|
1416 |
+
"auxiliary_info": {
|
1417 |
+
"scene": {
|
1418 |
+
"scene": {
|
1419 |
+
"scene": "industrial area"
|
1420 |
+
}
|
1421 |
+
}
|
1422 |
+
}
|
1423 |
+
},
|
1424 |
+
"163_junkyard.mp4": {
|
1425 |
+
"prompt_en": "junkyard",
|
1426 |
+
"dimension": [
|
1427 |
+
"scene",
|
1428 |
+
"background_consistency"
|
1429 |
+
],
|
1430 |
+
"auxiliary_info": {
|
1431 |
+
"scene": {
|
1432 |
+
"scene": {
|
1433 |
+
"scene": "junkyard"
|
1434 |
+
}
|
1435 |
+
}
|
1436 |
+
}
|
1437 |
+
},
|
1438 |
+
"164_lighthouse.mp4": {
|
1439 |
+
"prompt_en": "lighthouse",
|
1440 |
+
"dimension": [
|
1441 |
+
"scene",
|
1442 |
+
"background_consistency"
|
1443 |
+
],
|
1444 |
+
"auxiliary_info": {
|
1445 |
+
"scene": {
|
1446 |
+
"scene": {
|
1447 |
+
"scene": "lighthouse"
|
1448 |
+
}
|
1449 |
+
}
|
1450 |
+
}
|
1451 |
+
},
|
1452 |
+
"165_indoor_movie_theater.mp4": {
|
1453 |
+
"prompt_en": "indoor movie theater",
|
1454 |
+
"dimension": [
|
1455 |
+
"scene",
|
1456 |
+
"background_consistency"
|
1457 |
+
],
|
1458 |
+
"auxiliary_info": {
|
1459 |
+
"scene": {
|
1460 |
+
"scene": {
|
1461 |
+
"scene": "indoor movie theater"
|
1462 |
+
}
|
1463 |
+
}
|
1464 |
+
}
|
1465 |
+
},
|
1466 |
+
"166_nursery.mp4": {
|
1467 |
+
"prompt_en": "nursery",
|
1468 |
+
"dimension": [
|
1469 |
+
"scene",
|
1470 |
+
"background_consistency"
|
1471 |
+
],
|
1472 |
+
"auxiliary_info": {
|
1473 |
+
"scene": {
|
1474 |
+
"scene": {
|
1475 |
+
"scene": "nursery"
|
1476 |
+
}
|
1477 |
+
}
|
1478 |
+
}
|
1479 |
+
},
|
1480 |
+
"167_ocean.mp4": {
|
1481 |
+
"prompt_en": "ocean",
|
1482 |
+
"dimension": [
|
1483 |
+
"scene",
|
1484 |
+
"background_consistency"
|
1485 |
+
],
|
1486 |
+
"auxiliary_info": {
|
1487 |
+
"scene": {
|
1488 |
+
"scene": {
|
1489 |
+
"scene": "ocean"
|
1490 |
+
}
|
1491 |
+
}
|
1492 |
+
}
|
1493 |
+
},
|
1494 |
+
"168_office.mp4": {
|
1495 |
+
"prompt_en": "office",
|
1496 |
+
"dimension": [
|
1497 |
+
"scene",
|
1498 |
+
"background_consistency"
|
1499 |
+
],
|
1500 |
+
"auxiliary_info": {
|
1501 |
+
"scene": {
|
1502 |
+
"scene": {
|
1503 |
+
"scene": "office"
|
1504 |
+
}
|
1505 |
+
}
|
1506 |
+
}
|
1507 |
+
},
|
1508 |
+
"169_river.mp4": {
|
1509 |
+
"prompt_en": "river",
|
1510 |
+
"dimension": [
|
1511 |
+
"scene",
|
1512 |
+
"background_consistency"
|
1513 |
+
],
|
1514 |
+
"auxiliary_info": {
|
1515 |
+
"scene": {
|
1516 |
+
"scene": {
|
1517 |
+
"scene": "river"
|
1518 |
+
}
|
1519 |
+
}
|
1520 |
+
}
|
1521 |
+
},
|
1522 |
+
"170_shower.mp4": {
|
1523 |
+
"prompt_en": "shower",
|
1524 |
+
"dimension": [
|
1525 |
+
"scene",
|
1526 |
+
"background_consistency"
|
1527 |
+
],
|
1528 |
+
"auxiliary_info": {
|
1529 |
+
"scene": {
|
1530 |
+
"scene": {
|
1531 |
+
"scene": "shower"
|
1532 |
+
}
|
1533 |
+
}
|
1534 |
+
}
|
1535 |
+
},
|
1536 |
+
"171_supermarket.mp4": {
|
1537 |
+
"prompt_en": "supermarket",
|
1538 |
+
"dimension": [
|
1539 |
+
"scene",
|
1540 |
+
"background_consistency"
|
1541 |
+
],
|
1542 |
+
"auxiliary_info": {
|
1543 |
+
"scene": {
|
1544 |
+
"scene": {
|
1545 |
+
"scene": "supermarket"
|
1546 |
+
}
|
1547 |
+
}
|
1548 |
+
}
|
1549 |
+
},
|
1550 |
+
"172_tower.mp4": {
|
1551 |
+
"prompt_en": "tower",
|
1552 |
+
"dimension": [
|
1553 |
+
"scene",
|
1554 |
+
"background_consistency"
|
1555 |
+
],
|
1556 |
+
"auxiliary_info": {
|
1557 |
+
"scene": {
|
1558 |
+
"scene": {
|
1559 |
+
"scene": "tower"
|
1560 |
+
}
|
1561 |
+
}
|
1562 |
+
}
|
1563 |
+
},
|
1564 |
+
"173_bakery_shop.mp4": {
|
1565 |
+
"prompt_en": "bakery shop",
|
1566 |
+
"dimension": [
|
1567 |
+
"scene",
|
1568 |
+
"background_consistency"
|
1569 |
+
],
|
1570 |
+
"auxiliary_info": {
|
1571 |
+
"scene": {
|
1572 |
+
"scene": {
|
1573 |
+
"scene": "bakery shop"
|
1574 |
+
}
|
1575 |
+
}
|
1576 |
+
}
|
1577 |
+
},
|
1578 |
+
"174_ballroom.mp4": {
|
1579 |
+
"prompt_en": "ballroom",
|
1580 |
+
"dimension": [
|
1581 |
+
"scene",
|
1582 |
+
"background_consistency"
|
1583 |
+
],
|
1584 |
+
"auxiliary_info": {
|
1585 |
+
"scene": {
|
1586 |
+
"scene": {
|
1587 |
+
"scene": "ballroom"
|
1588 |
+
}
|
1589 |
+
}
|
1590 |
+
}
|
1591 |
+
},
|
1592 |
+
"175_botanical_garden.mp4": {
|
1593 |
+
"prompt_en": "botanical garden",
|
1594 |
+
"dimension": [
|
1595 |
+
"scene",
|
1596 |
+
"background_consistency"
|
1597 |
+
],
|
1598 |
+
"auxiliary_info": {
|
1599 |
+
"scene": {
|
1600 |
+
"scene": {
|
1601 |
+
"scene": "botanical garden"
|
1602 |
+
}
|
1603 |
+
}
|
1604 |
+
}
|
1605 |
+
},
|
1606 |
+
"176_cafeteria.mp4": {
|
1607 |
+
"prompt_en": "cafeteria",
|
1608 |
+
"dimension": [
|
1609 |
+
"scene",
|
1610 |
+
"background_consistency"
|
1611 |
+
],
|
1612 |
+
"auxiliary_info": {
|
1613 |
+
"scene": {
|
1614 |
+
"scene": {
|
1615 |
+
"scene": "cafeteria"
|
1616 |
+
}
|
1617 |
+
}
|
1618 |
+
}
|
1619 |
+
},
|
1620 |
+
"177_crosswalk.mp4": {
|
1621 |
+
"prompt_en": "crosswalk",
|
1622 |
+
"dimension": [
|
1623 |
+
"scene",
|
1624 |
+
"background_consistency"
|
1625 |
+
],
|
1626 |
+
"auxiliary_info": {
|
1627 |
+
"scene": {
|
1628 |
+
"scene": {
|
1629 |
+
"scene": "crosswalk"
|
1630 |
+
}
|
1631 |
+
}
|
1632 |
+
}
|
1633 |
+
},
|
1634 |
+
"178_construction_site.mp4": {
|
1635 |
+
"prompt_en": "construction site",
|
1636 |
+
"dimension": [
|
1637 |
+
"scene",
|
1638 |
+
"background_consistency"
|
1639 |
+
],
|
1640 |
+
"auxiliary_info": {
|
1641 |
+
"scene": {
|
1642 |
+
"scene": {
|
1643 |
+
"scene": "construction site"
|
1644 |
+
}
|
1645 |
+
}
|
1646 |
+
}
|
1647 |
+
},
|
1648 |
+
"179_courtyard.mp4": {
|
1649 |
+
"prompt_en": "courtyard",
|
1650 |
+
"dimension": [
|
1651 |
+
"scene",
|
1652 |
+
"background_consistency"
|
1653 |
+
],
|
1654 |
+
"auxiliary_info": {
|
1655 |
+
"scene": {
|
1656 |
+
"scene": {
|
1657 |
+
"scene": "courtyard"
|
1658 |
+
}
|
1659 |
+
}
|
1660 |
+
}
|
1661 |
+
},
|
1662 |
+
"180_food_court.mp4": {
|
1663 |
+
"prompt_en": "food court",
|
1664 |
+
"dimension": [
|
1665 |
+
"scene",
|
1666 |
+
"background_consistency"
|
1667 |
+
],
|
1668 |
+
"auxiliary_info": {
|
1669 |
+
"scene": {
|
1670 |
+
"scene": {
|
1671 |
+
"scene": "food court"
|
1672 |
+
}
|
1673 |
+
}
|
1674 |
+
}
|
1675 |
+
},
|
1676 |
+
"181_indoor_gymnasium.mp4": {
|
1677 |
+
"prompt_en": "indoor gymnasium",
|
1678 |
+
"dimension": [
|
1679 |
+
"scene",
|
1680 |
+
"background_consistency"
|
1681 |
+
],
|
1682 |
+
"auxiliary_info": {
|
1683 |
+
"scene": {
|
1684 |
+
"scene": {
|
1685 |
+
"scene": "indoor gymnasium"
|
1686 |
+
}
|
1687 |
+
}
|
1688 |
+
}
|
1689 |
+
},
|
1690 |
+
"182_indoor_library.mp4": {
|
1691 |
+
"prompt_en": "indoor library",
|
1692 |
+
"dimension": [
|
1693 |
+
"scene",
|
1694 |
+
"background_consistency"
|
1695 |
+
],
|
1696 |
+
"auxiliary_info": {
|
1697 |
+
"scene": {
|
1698 |
+
"scene": {
|
1699 |
+
"scene": "indoor library"
|
1700 |
+
}
|
1701 |
+
}
|
1702 |
+
}
|
1703 |
+
},
|
1704 |
+
"183_marsh.mp4": {
|
1705 |
+
"prompt_en": "marsh",
|
1706 |
+
"dimension": [
|
1707 |
+
"scene",
|
1708 |
+
"background_consistency"
|
1709 |
+
],
|
1710 |
+
"auxiliary_info": {
|
1711 |
+
"scene": {
|
1712 |
+
"scene": {
|
1713 |
+
"scene": "marsh"
|
1714 |
+
}
|
1715 |
+
}
|
1716 |
+
}
|
1717 |
+
},
|
1718 |
+
"184_mountain.mp4": {
|
1719 |
+
"prompt_en": "mountain",
|
1720 |
+
"dimension": [
|
1721 |
+
"scene",
|
1722 |
+
"background_consistency"
|
1723 |
+
],
|
1724 |
+
"auxiliary_info": {
|
1725 |
+
"scene": {
|
1726 |
+
"scene": {
|
1727 |
+
"scene": "mountain"
|
1728 |
+
}
|
1729 |
+
}
|
1730 |
+
}
|
1731 |
+
},
|
1732 |
+
"185_science_museum.mp4": {
|
1733 |
+
"prompt_en": "science museum",
|
1734 |
+
"dimension": [
|
1735 |
+
"scene",
|
1736 |
+
"background_consistency"
|
1737 |
+
],
|
1738 |
+
"auxiliary_info": {
|
1739 |
+
"scene": {
|
1740 |
+
"scene": {
|
1741 |
+
"scene": "science museum"
|
1742 |
+
}
|
1743 |
+
}
|
1744 |
+
}
|
1745 |
+
},
|
1746 |
+
"186_a_parking_meter_on_the_right_of_a_bench,_front_view.mp4": {
|
1747 |
+
"prompt_en": "a parking meter on the right of a bench, front view",
|
1748 |
+
"dimension": [
|
1749 |
+
"spatial_relationship"
|
1750 |
+
],
|
1751 |
+
"auxiliary_info": {
|
1752 |
+
"spatial_relationship": {
|
1753 |
+
"spatial_relationship": {
|
1754 |
+
"object_a": "parking meter",
|
1755 |
+
"object_b": "bench",
|
1756 |
+
"relationship": "on the right of"
|
1757 |
+
}
|
1758 |
+
}
|
1759 |
+
}
|
1760 |
+
},
|
1761 |
+
"187_a_cow_on_the_right_of_an_elephant,_front_view.mp4": {
|
1762 |
+
"prompt_en": "a cow on the right of an elephant, front view",
|
1763 |
+
"dimension": [
|
1764 |
+
"spatial_relationship"
|
1765 |
+
],
|
1766 |
+
"auxiliary_info": {
|
1767 |
+
"spatial_relationship": {
|
1768 |
+
"spatial_relationship": {
|
1769 |
+
"object_a": "cow",
|
1770 |
+
"object_b": "elephant",
|
1771 |
+
"relationship": "on the right of"
|
1772 |
+
}
|
1773 |
+
}
|
1774 |
+
}
|
1775 |
+
},
|
1776 |
+
"188_a_sports_ball_on_the_right_of_a_baseball_bat,_front_view.mp4": {
|
1777 |
+
"prompt_en": "a sports ball on the right of a baseball bat, front view",
|
1778 |
+
"dimension": [
|
1779 |
+
"spatial_relationship"
|
1780 |
+
],
|
1781 |
+
"auxiliary_info": {
|
1782 |
+
"spatial_relationship": {
|
1783 |
+
"spatial_relationship": {
|
1784 |
+
"object_a": "sports ball",
|
1785 |
+
"object_b": "baseball bat",
|
1786 |
+
"relationship": "on the right of"
|
1787 |
+
}
|
1788 |
+
}
|
1789 |
+
}
|
1790 |
+
},
|
1791 |
+
"189_a_baseball_bat_on_the_left_of_a_baseball_glove,_front_view.mp4": {
|
1792 |
+
"prompt_en": "a baseball bat on the left of a baseball glove, front view",
|
1793 |
+
"dimension": [
|
1794 |
+
"spatial_relationship"
|
1795 |
+
],
|
1796 |
+
"auxiliary_info": {
|
1797 |
+
"spatial_relationship": {
|
1798 |
+
"spatial_relationship": {
|
1799 |
+
"object_a": "baseball bat",
|
1800 |
+
"object_b": "baseball glove",
|
1801 |
+
"relationship": "on the left of"
|
1802 |
+
}
|
1803 |
+
}
|
1804 |
+
}
|
1805 |
+
},
|
1806 |
+
"190_an_oven_on_the_bottom_of_a_toaster,_front_view.mp4": {
|
1807 |
+
"prompt_en": "an oven on the bottom of a toaster, front view",
|
1808 |
+
"dimension": [
|
1809 |
+
"spatial_relationship"
|
1810 |
+
],
|
1811 |
+
"auxiliary_info": {
|
1812 |
+
"spatial_relationship": {
|
1813 |
+
"spatial_relationship": {
|
1814 |
+
"object_a": "oven",
|
1815 |
+
"object_b": "toaster",
|
1816 |
+
"relationship": "on the bottom of"
|
1817 |
+
}
|
1818 |
+
}
|
1819 |
+
}
|
1820 |
+
},
|
1821 |
+
"191_a_hot_dog_on_the_top_of_a_pizza,_front_view.mp4": {
|
1822 |
+
"prompt_en": "a hot dog on the top of a pizza, front view",
|
1823 |
+
"dimension": [
|
1824 |
+
"spatial_relationship"
|
1825 |
+
],
|
1826 |
+
"auxiliary_info": {
|
1827 |
+
"spatial_relationship": {
|
1828 |
+
"spatial_relationship": {
|
1829 |
+
"object_a": "hot dog",
|
1830 |
+
"object_b": "pizza",
|
1831 |
+
"relationship": "on the top of"
|
1832 |
+
}
|
1833 |
+
}
|
1834 |
+
}
|
1835 |
+
},
|
1836 |
+
"192_a_donut_on_the_top_of_broccoli,_front_view.mp4": {
|
1837 |
+
"prompt_en": "a donut on the top of broccoli, front view",
|
1838 |
+
"dimension": [
|
1839 |
+
"spatial_relationship"
|
1840 |
+
],
|
1841 |
+
"auxiliary_info": {
|
1842 |
+
"spatial_relationship": {
|
1843 |
+
"spatial_relationship": {
|
1844 |
+
"object_a": "donut",
|
1845 |
+
"object_b": "broccoli",
|
1846 |
+
"relationship": "on the top of"
|
1847 |
+
}
|
1848 |
+
}
|
1849 |
+
}
|
1850 |
+
},
|
1851 |
+
"193_a_donut_on_the_bottom_of_broccoli,_front_view.mp4": {
|
1852 |
+
"prompt_en": "a donut on the bottom of broccoli, front view",
|
1853 |
+
"dimension": [
|
1854 |
+
"spatial_relationship"
|
1855 |
+
],
|
1856 |
+
"auxiliary_info": {
|
1857 |
+
"spatial_relationship": {
|
1858 |
+
"spatial_relationship": {
|
1859 |
+
"object_a": "donut",
|
1860 |
+
"object_b": "broccoli",
|
1861 |
+
"relationship": "on the bottom of"
|
1862 |
+
}
|
1863 |
+
}
|
1864 |
+
}
|
1865 |
+
},
|
1866 |
+
"194_broccoli_on_the_bottom_of_a_banana,_front_view.mp4": {
|
1867 |
+
"prompt_en": "broccoli on the bottom of a banana, front view",
|
1868 |
+
"dimension": [
|
1869 |
+
"spatial_relationship"
|
1870 |
+
],
|
1871 |
+
"auxiliary_info": {
|
1872 |
+
"spatial_relationship": {
|
1873 |
+
"spatial_relationship": {
|
1874 |
+
"object_a": "broccoli",
|
1875 |
+
"object_b": "banana",
|
1876 |
+
"relationship": "on the bottom of"
|
1877 |
+
}
|
1878 |
+
}
|
1879 |
+
}
|
1880 |
+
},
|
1881 |
+
"195_skis_on_the_top_of_a_snowboard,_front_view.mp4": {
|
1882 |
+
"prompt_en": "skis on the top of a snowboard, front view",
|
1883 |
+
"dimension": [
|
1884 |
+
"spatial_relationship"
|
1885 |
+
],
|
1886 |
+
"auxiliary_info": {
|
1887 |
+
"spatial_relationship": {
|
1888 |
+
"spatial_relationship": {
|
1889 |
+
"object_a": "skis",
|
1890 |
+
"object_b": "snowboard",
|
1891 |
+
"relationship": "on the top of"
|
1892 |
+
}
|
1893 |
+
}
|
1894 |
+
}
|
1895 |
+
},
|
1896 |
+
"196_a_snowboard_on_the_bottom_of_a_kite,_front_view.mp4": {
|
1897 |
+
"prompt_en": "a snowboard on the bottom of a kite, front view",
|
1898 |
+
"dimension": [
|
1899 |
+
"spatial_relationship"
|
1900 |
+
],
|
1901 |
+
"auxiliary_info": {
|
1902 |
+
"spatial_relationship": {
|
1903 |
+
"spatial_relationship": {
|
1904 |
+
"object_a": "snowboard",
|
1905 |
+
"object_b": "kite",
|
1906 |
+
"relationship": "on the bottom of"
|
1907 |
+
}
|
1908 |
+
}
|
1909 |
+
}
|
1910 |
+
},
|
1911 |
+
"197_a_kite_on_the_bottom_of_a_skateboard,_front_view.mp4": {
|
1912 |
+
"prompt_en": "a kite on the bottom of a skateboard, front view",
|
1913 |
+
"dimension": [
|
1914 |
+
"spatial_relationship"
|
1915 |
+
],
|
1916 |
+
"auxiliary_info": {
|
1917 |
+
"spatial_relationship": {
|
1918 |
+
"spatial_relationship": {
|
1919 |
+
"object_a": "kite",
|
1920 |
+
"object_b": "skateboard",
|
1921 |
+
"relationship": "on the bottom of"
|
1922 |
+
}
|
1923 |
+
}
|
1924 |
+
}
|
1925 |
+
},
|
1926 |
+
"198_a_skateboard_on_the_top_of_a_surfboard,_front_view.mp4": {
|
1927 |
+
"prompt_en": "a skateboard on the top of a surfboard, front view",
|
1928 |
+
"dimension": [
|
1929 |
+
"spatial_relationship"
|
1930 |
+
],
|
1931 |
+
"auxiliary_info": {
|
1932 |
+
"spatial_relationship": {
|
1933 |
+
"spatial_relationship": {
|
1934 |
+
"object_a": "skateboard",
|
1935 |
+
"object_b": "surfboard",
|
1936 |
+
"relationship": "on the top of"
|
1937 |
+
}
|
1938 |
+
}
|
1939 |
+
}
|
1940 |
+
},
|
1941 |
+
"199_a_surfboard_on_the_top_of_skis,_front_view.mp4": {
|
1942 |
+
"prompt_en": "a surfboard on the top of skis, front view",
|
1943 |
+
"dimension": [
|
1944 |
+
"spatial_relationship"
|
1945 |
+
],
|
1946 |
+
"auxiliary_info": {
|
1947 |
+
"spatial_relationship": {
|
1948 |
+
"spatial_relationship": {
|
1949 |
+
"object_a": "surfboard",
|
1950 |
+
"object_b": "skis",
|
1951 |
+
"relationship": "on the top of"
|
1952 |
+
}
|
1953 |
+
}
|
1954 |
+
}
|
1955 |
+
}
|
1956 |
+
}
|
src/videogen_hub/benchmark/t2v_vbench_800.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
src/videogen_hub/benchmark/t2v_vbench_remain.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
src/videogen_hub/benchmark/t2v_vbench_remain_1000.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
src/videogen_hub/benchmark/t2v_vbench_remain_200.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
src/videogen_hub/benchmark/text_guided_t2v.py
ADDED
@@ -0,0 +1,137 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Optional
|
2 |
+
import os
|
3 |
+
from tqdm import tqdm
|
4 |
+
from videogen_hub.infermodels import load_model
|
5 |
+
import cv2, json
|
6 |
+
import numpy as np
|
7 |
+
import argparse
|
8 |
+
from videogen_hub.utils.file_helper import get_file_path
|
9 |
+
from moviepy.editor import ImageSequenceClip
|
10 |
+
|
11 |
+
|
12 |
+
def infer_text_guided_vg_bench(
|
13 |
+
model,
|
14 |
+
result_folder: str = "results",
|
15 |
+
experiment_name: str = "Exp_Text-Guided_VG",
|
16 |
+
overwrite_model_outputs: bool = False,
|
17 |
+
overwrite_inputs: bool = False,
|
18 |
+
limit_videos_amount: Optional[int] = None,
|
19 |
+
):
|
20 |
+
"""
|
21 |
+
Performs inference on the VideogenHub dataset using the provided text-guided video generation model.
|
22 |
+
|
23 |
+
Args:
|
24 |
+
model: Instance of a model that supports text-guided video generation. Expected to have
|
25 |
+
a method 'infer_one_video' for inferencing.
|
26 |
+
result_folder (str, optional): Path to the root directory where the results should be saved.
|
27 |
+
Defaults to 'results'.
|
28 |
+
experiment_name (str, optional): Name of the folder inside 'result_folder' where results
|
29 |
+
for this particular experiment will be stored. Defaults to "Exp_Text-Guided_IG".
|
30 |
+
overwrite_model_outputs (bool, optional): If set to True, will overwrite any pre-existing
|
31 |
+
model outputs. Useful for resuming runs. Defaults to False.
|
32 |
+
overwrite_inputs (bool, optional): If set to True, will overwrite any pre-existing input
|
33 |
+
samples. Typically, should be set to False unless there's a need to update the inputs.
|
34 |
+
Defaults to False.
|
35 |
+
limit_videos_amount (int, optional): Limits the number of videos to be processed. If set to
|
36 |
+
None, all videos in the dataset will be processed.
|
37 |
+
|
38 |
+
Returns:
|
39 |
+
None. Results are saved in the specified directory.
|
40 |
+
|
41 |
+
Notes:
|
42 |
+
The function processes each sample from the dataset, uses the model to infer an video based
|
43 |
+
on text prompts, and then saves the resulting videos in the specified directories.
|
44 |
+
"""
|
45 |
+
benchmark_prompt_path = "t2v_vbench_1000.json"
|
46 |
+
prompts = json.load(open(get_file_path(benchmark_prompt_path), "r"))
|
47 |
+
save_path = os.path.join(result_folder, experiment_name, "dataset_lookup.json")
|
48 |
+
if overwrite_inputs or not os.path.exists(save_path):
|
49 |
+
if not os.path.exists(os.path.join(result_folder, experiment_name)):
|
50 |
+
os.makedirs(os.path.join(result_folder, experiment_name))
|
51 |
+
with open(save_path, "w") as f:
|
52 |
+
json.dump(prompts, f, indent=4)
|
53 |
+
|
54 |
+
print(
|
55 |
+
"========> Running Benchmark Dataset:",
|
56 |
+
experiment_name,
|
57 |
+
"| Model:",
|
58 |
+
model.__class__.__name__,
|
59 |
+
)
|
60 |
+
|
61 |
+
for file_basename, prompt in tqdm(prompts.items()):
|
62 |
+
idx = int(file_basename.split("_")[0])
|
63 |
+
dest_folder = os.path.join(
|
64 |
+
result_folder, experiment_name, model.__class__.__name__
|
65 |
+
)
|
66 |
+
# file_basename = f"{idx}_{prompt['prompt_en'].replace(' ', '_')}.mp4"
|
67 |
+
if not os.path.exists(dest_folder):
|
68 |
+
os.mkdir(dest_folder)
|
69 |
+
dest_file = os.path.join(dest_folder, file_basename)
|
70 |
+
if overwrite_model_outputs or not os.path.exists(dest_file):
|
71 |
+
print("========> Inferencing", dest_file)
|
72 |
+
frames = model.infer_one_video(prompt=prompt["prompt_en"])
|
73 |
+
|
74 |
+
#special_treated_list = ["LaVie", "ModelScope", "T2VTurbo"]
|
75 |
+
special_treated_list = []
|
76 |
+
if model.__class__.__name__ in special_treated_list:
|
77 |
+
print("======> Saved through cv2.VideoWriter_fourcc")
|
78 |
+
# save the video
|
79 |
+
fps = 8
|
80 |
+
fourcc = cv2.VideoWriter_fourcc(*"mp4v") # Codec
|
81 |
+
out = cv2.VideoWriter(
|
82 |
+
dest_file, fourcc, fps, (frames.shape[2], frames.shape[1])
|
83 |
+
)
|
84 |
+
|
85 |
+
# Convert each tensor frame to numpy and write it to the video
|
86 |
+
for i in range(frames.shape[0]):
|
87 |
+
frame = frames[i].numpy().astype(np.uint8)
|
88 |
+
out.write(frame)
|
89 |
+
|
90 |
+
out.release()
|
91 |
+
else:
|
92 |
+
def tensor_to_video(tensor, output_path, fps=8):
|
93 |
+
"""
|
94 |
+
Converts a PyTorch tensor to a video file.
|
95 |
+
|
96 |
+
Args:
|
97 |
+
tensor (torch.Tensor): The input tensor of shape (T, C, H, W).
|
98 |
+
output_path (str): The path to save the output video.
|
99 |
+
fps (int): Frames per second for the output video.
|
100 |
+
"""
|
101 |
+
# Ensure the tensor is on the CPU and convert to NumPy array
|
102 |
+
tensor = tensor.cpu().numpy()
|
103 |
+
|
104 |
+
# Normalize the tensor values to [0, 1]
|
105 |
+
tensor_min = tensor.min()
|
106 |
+
tensor_max = tensor.max()
|
107 |
+
tensor = (tensor - tensor_min) / (tensor_max - tensor_min)
|
108 |
+
|
109 |
+
# Permute dimensions from (T, C, H, W) to (T, H, W, C) and scale to [0, 255]
|
110 |
+
video_frames = (tensor.transpose(0, 2, 3, 1) * 255).astype(np.uint8)
|
111 |
+
|
112 |
+
# Create a video clip from the frames
|
113 |
+
clip = ImageSequenceClip(list(video_frames), fps=fps)
|
114 |
+
|
115 |
+
# Write the video file
|
116 |
+
clip.write_videofile(output_path, codec='libx264')
|
117 |
+
|
118 |
+
if frames.shape[-1] == 3:
|
119 |
+
frames = frames.permute(0, 3, 1, 2)
|
120 |
+
print("======> corrected frames.shape", frames.shape)
|
121 |
+
|
122 |
+
tensor_to_video(frames, dest_file)
|
123 |
+
else:
|
124 |
+
print("========> Skipping", dest_file, ", it already exists")
|
125 |
+
|
126 |
+
if limit_videos_amount is not None and (idx >= limit_videos_amount):
|
127 |
+
break
|
128 |
+
|
129 |
+
|
130 |
+
# for testing
|
131 |
+
if __name__ == "__main__":
|
132 |
+
parser = argparse.ArgumentParser(description="Load a model by name")
|
133 |
+
parser.add_argument("--model_name", type=str, required=True, help="Name of the model to load")
|
134 |
+
args = parser.parse_args()
|
135 |
+
|
136 |
+
model = load_model(args.model_name)
|
137 |
+
infer_text_guided_vg_bench(model)
|
src/videogen_hub/benchmark/transform.py
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
|
3 |
+
def main(prompt_path):
|
4 |
+
new_prompt = {}
|
5 |
+
prompts = json.load(open(prompt_path, "r"))
|
6 |
+
|
7 |
+
for idx, prompt in enumerate(prompts):
|
8 |
+
new_prompt[f"{idx}_{prompt['prompt_en'].replace(' ', '_')}.mp4"] = prompt
|
9 |
+
|
10 |
+
with open(f"new_{prompt_path}", "w") as f:
|
11 |
+
json.dump(new_prompt, f, indent=4)
|
12 |
+
|
13 |
+
|
14 |
+
if __name__ == "__main__":
|
15 |
+
# main("t2v_vbench_200.json")
|
16 |
+
main("t2v_vbench_remain.json")
|