import os, sys import torch from diffusers.utils import load_image # Directly run `python -m pytest` or # Directly run `python -m pytest -v -s --disable-warnings` for Debugging # To test single function: # pytest tests/test_i2v.py::test_function_name dummy_prompt = "A tiger in a lab coat with a 1980s Miami vibe, turning a well oiled science content machine." dummy_image = load_image("https://chromaica.github.io/Museum/ImagenHub_Text-Guided_IG/DALLE3/sample_69.jpg") import sys sys.path.append("src") def test_SEINE(): from videogen_hub.infermodels import SEINE model = SEINE() assert model is not None out_video = model.infer_one_video(dummy_image, dummy_prompt) assert out_video is not None # check if out_video is a tensor or not assert isinstance(out_video, torch.Tensor) print(out_video.shape) def test_ConsistI2V(): from videogen_hub.infermodels import ConsistI2V model = ConsistI2V() assert model is not None out_video = model.infer_one_video(dummy_image, dummy_prompt) assert out_video is not None # check if out_video is a tensor or not assert isinstance(out_video, torch.Tensor) print(out_video.shape) def test_DynamiCrafter(): from videogen_hub.infermodels import DynamiCrafter model = DynamiCrafter() assert model is not None out_video = model.infer_one_video(dummy_image, dummy_prompt) assert out_video is not None # check if out_video is a tensor or not assert isinstance(out_video, torch.Tensor) print(out_video.shape)