Spaces:
Runtime error
Runtime error
Fix this ?
Browse files- vc_infer_pipeline.py +31 -77
vc_infer_pipeline.py
CHANGED
@@ -8,12 +8,11 @@ from functools import lru_cache
|
|
8 |
|
9 |
bh, ah = signal.butter(N=5, Wn=48, btype="high", fs=16000)
|
10 |
|
11 |
-
input_audio_path2wav
|
12 |
-
|
13 |
|
14 |
@lru_cache
|
15 |
-
def cache_harvest_f0(input_audio_path,
|
16 |
-
audio
|
17 |
f0, t = pyworld.harvest(
|
18 |
audio,
|
19 |
fs=fs,
|
@@ -24,29 +23,18 @@ def cache_harvest_f0(input_audio_path, fs, f0max, f0min, frame_period):
|
|
24 |
f0 = pyworld.stonemask(audio, f0, t, fs)
|
25 |
return f0
|
26 |
|
27 |
-
|
28 |
-
def change_rms(data1, sr1, data2, sr2, rate): # 1是输入音频,2是输出音频,rate是2的占比
|
29 |
# print(data1.max(),data2.max())
|
30 |
-
rms1 = librosa.feature.rms(
|
31 |
-
|
32 |
-
)
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
).
|
38 |
-
rms2 = torch.from_numpy(rms2)
|
39 |
-
rms2 = F.interpolate(
|
40 |
-
rms2.unsqueeze(0), size=data2.shape[0], mode="linear"
|
41 |
-
).squeeze()
|
42 |
-
rms2 = torch.max(rms2, torch.zeros_like(rms2) + 1e-6)
|
43 |
-
data2 *= (
|
44 |
-
torch.pow(rms1, torch.tensor(1 - rate))
|
45 |
-
* torch.pow(rms2, torch.tensor(rate - 1))
|
46 |
-
).numpy()
|
47 |
return data2
|
48 |
|
49 |
-
|
50 |
class VC(object):
|
51 |
def __init__(self, tgt_sr, config):
|
52 |
self.x_pad, self.x_query, self.x_center, self.x_max, self.is_half = (
|
@@ -66,16 +54,7 @@ class VC(object):
|
|
66 |
self.t_max = self.sr * self.x_max # 免查询时长阈值
|
67 |
self.device = config.device
|
68 |
|
69 |
-
def get_f0(
|
70 |
-
self,
|
71 |
-
input_audio_path,
|
72 |
-
x,
|
73 |
-
p_len,
|
74 |
-
f0_up_key,
|
75 |
-
f0_method,
|
76 |
-
filter_radius,
|
77 |
-
inp_f0=None,
|
78 |
-
):
|
79 |
global input_audio_path2wav
|
80 |
time_step = self.window / self.sr * 1000
|
81 |
f0_min = 50
|
@@ -99,9 +78,9 @@ class VC(object):
|
|
99 |
f0, [[pad_size, p_len - len(f0) - pad_size]], mode="constant"
|
100 |
)
|
101 |
elif f0_method == "harvest":
|
102 |
-
input_audio_path2wav[input_audio_path]
|
103 |
-
f0
|
104 |
-
if
|
105 |
f0 = signal.medfilt(f0, 3)
|
106 |
elif f0_method == "crepe":
|
107 |
model = "full"
|
@@ -146,7 +125,7 @@ class VC(object):
|
|
146 |
) + 1
|
147 |
f0_mel[f0_mel <= 1] = 1
|
148 |
f0_mel[f0_mel > 255] = 255
|
149 |
-
f0_coarse = np.rint(f0_mel).astype(
|
150 |
return f0_coarse, f0bak # 1-0
|
151 |
|
152 |
def vc(
|
@@ -162,7 +141,6 @@ class VC(object):
|
|
162 |
big_npy,
|
163 |
index_rate,
|
164 |
version,
|
165 |
-
protect,
|
166 |
): # ,file_index,file_big_npy
|
167 |
feats = torch.from_numpy(audio0)
|
168 |
if self.is_half:
|
@@ -183,9 +161,8 @@ class VC(object):
|
|
183 |
t0 = ttime()
|
184 |
with torch.no_grad():
|
185 |
logits = model.extract_features(**inputs)
|
186 |
-
feats = model.final_proj(logits[0])
|
187 |
-
|
188 |
-
feats0 = feats.clone()
|
189 |
if (
|
190 |
isinstance(index, type(None)) == False
|
191 |
and isinstance(big_npy, type(None)) == False
|
@@ -211,10 +188,6 @@ class VC(object):
|
|
211 |
)
|
212 |
|
213 |
feats = F.interpolate(feats.permute(0, 2, 1), scale_factor=2).permute(0, 2, 1)
|
214 |
-
if protect < 0.5:
|
215 |
-
feats0 = F.interpolate(feats0.permute(0, 2, 1), scale_factor=2).permute(
|
216 |
-
0, 2, 1
|
217 |
-
)
|
218 |
t1 = ttime()
|
219 |
p_len = audio0.shape[0] // self.window
|
220 |
if feats.shape[1] < p_len:
|
@@ -222,14 +195,6 @@ class VC(object):
|
|
222 |
if pitch != None and pitchf != None:
|
223 |
pitch = pitch[:, :p_len]
|
224 |
pitchf = pitchf[:, :p_len]
|
225 |
-
|
226 |
-
if protect < 0.5:
|
227 |
-
pitchff = pitchf.clone()
|
228 |
-
pitchff[pitchf > 0] = 1
|
229 |
-
pitchff[pitchf < 1] = protect
|
230 |
-
pitchff = pitchff.unsqueeze(-1)
|
231 |
-
feats = feats * pitchff + feats0 * (1 - pitchff)
|
232 |
-
feats = feats.to(feats0.dtype)
|
233 |
p_len = torch.tensor([p_len], device=self.device).long()
|
234 |
with torch.no_grad():
|
235 |
if pitch != None and pitchf != None:
|
@@ -241,7 +206,10 @@ class VC(object):
|
|
241 |
)
|
242 |
else:
|
243 |
audio1 = (
|
244 |
-
(net_g.infer(feats, p_len, sid)[0][0, 0])
|
|
|
|
|
|
|
245 |
)
|
246 |
del feats, p_len, padding_mask
|
247 |
if torch.cuda.is_available():
|
@@ -270,7 +238,6 @@ class VC(object):
|
|
270 |
resample_sr,
|
271 |
rms_mix_rate,
|
272 |
version,
|
273 |
-
protect,
|
274 |
f0_file=None,
|
275 |
):
|
276 |
if (
|
@@ -325,15 +292,7 @@ class VC(object):
|
|
325 |
sid = torch.tensor(sid, device=self.device).unsqueeze(0).long()
|
326 |
pitch, pitchf = None, None
|
327 |
if if_f0 == 1:
|
328 |
-
pitch, pitchf = self.get_f0(
|
329 |
-
input_audio_path,
|
330 |
-
audio_pad,
|
331 |
-
p_len,
|
332 |
-
f0_up_key,
|
333 |
-
f0_method,
|
334 |
-
filter_radius,
|
335 |
-
inp_f0,
|
336 |
-
)
|
337 |
pitch = pitch[:p_len]
|
338 |
pitchf = pitchf[:p_len]
|
339 |
if self.device == "mps":
|
@@ -358,7 +317,6 @@ class VC(object):
|
|
358 |
big_npy,
|
359 |
index_rate,
|
360 |
version,
|
361 |
-
protect,
|
362 |
)[self.t_pad_tgt : -self.t_pad_tgt]
|
363 |
)
|
364 |
else:
|
@@ -375,7 +333,6 @@ class VC(object):
|
|
375 |
big_npy,
|
376 |
index_rate,
|
377 |
version,
|
378 |
-
protect,
|
379 |
)[self.t_pad_tgt : -self.t_pad_tgt]
|
380 |
)
|
381 |
s = t
|
@@ -393,7 +350,6 @@ class VC(object):
|
|
393 |
big_npy,
|
394 |
index_rate,
|
395 |
version,
|
396 |
-
protect,
|
397 |
)[self.t_pad_tgt : -self.t_pad_tgt]
|
398 |
)
|
399 |
else:
|
@@ -410,21 +366,19 @@ class VC(object):
|
|
410 |
big_npy,
|
411 |
index_rate,
|
412 |
version,
|
413 |
-
protect,
|
414 |
)[self.t_pad_tgt : -self.t_pad_tgt]
|
415 |
)
|
416 |
audio_opt = np.concatenate(audio_opt)
|
417 |
-
if
|
418 |
-
audio_opt
|
419 |
-
if
|
420 |
audio_opt = librosa.resample(
|
421 |
audio_opt, orig_sr=tgt_sr, target_sr=resample_sr
|
422 |
)
|
423 |
-
audio_max
|
424 |
-
max_int16
|
425 |
-
if
|
426 |
-
|
427 |
-
audio_opt = (audio_opt * max_int16).astype(np.int16)
|
428 |
del pitch, pitchf, sid
|
429 |
if torch.cuda.is_available():
|
430 |
torch.cuda.empty_cache()
|
|
|
8 |
|
9 |
bh, ah = signal.butter(N=5, Wn=48, btype="high", fs=16000)
|
10 |
|
11 |
+
input_audio_path2wav={}
|
|
|
12 |
|
13 |
@lru_cache
|
14 |
+
def cache_harvest_f0(input_audio_path,fs,f0max,f0min,frame_period):
|
15 |
+
audio=input_audio_path2wav[input_audio_path]
|
16 |
f0, t = pyworld.harvest(
|
17 |
audio,
|
18 |
fs=fs,
|
|
|
23 |
f0 = pyworld.stonemask(audio, f0, t, fs)
|
24 |
return f0
|
25 |
|
26 |
+
def change_rms(data1,sr1,data2,sr2,rate):#1是输入音频,2是输出音频,rate是2的占比
|
|
|
27 |
# print(data1.max(),data2.max())
|
28 |
+
rms1 = librosa.feature.rms(y=data1, frame_length=sr1//2*2, hop_length=sr1//2)#每半秒一个点
|
29 |
+
rms2 = librosa.feature.rms(y=data2, frame_length=sr2//2*2, hop_length=sr2//2)
|
30 |
+
rms1=torch.from_numpy(rms1)
|
31 |
+
rms1=F.interpolate(rms1.unsqueeze(0), size=data2.shape[0],mode='linear').squeeze()
|
32 |
+
rms2=torch.from_numpy(rms2)
|
33 |
+
rms2=F.interpolate(rms2.unsqueeze(0), size=data2.shape[0],mode='linear').squeeze()
|
34 |
+
rms2=torch.max(rms2,torch.zeros_like(rms2)+1e-6)
|
35 |
+
data2*=(torch.pow(rms1,torch.tensor(1-rate))*torch.pow(rms2,torch.tensor(rate-1))).numpy()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
return data2
|
37 |
|
|
|
38 |
class VC(object):
|
39 |
def __init__(self, tgt_sr, config):
|
40 |
self.x_pad, self.x_query, self.x_center, self.x_max, self.is_half = (
|
|
|
54 |
self.t_max = self.sr * self.x_max # 免查询时长阈值
|
55 |
self.device = config.device
|
56 |
|
57 |
+
def get_f0(self, input_audio_path,x, p_len, f0_up_key, f0_method,filter_radius, inp_f0=None):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
global input_audio_path2wav
|
59 |
time_step = self.window / self.sr * 1000
|
60 |
f0_min = 50
|
|
|
78 |
f0, [[pad_size, p_len - len(f0) - pad_size]], mode="constant"
|
79 |
)
|
80 |
elif f0_method == "harvest":
|
81 |
+
input_audio_path2wav[input_audio_path]=x.astype(np.double)
|
82 |
+
f0=cache_harvest_f0(input_audio_path,self.sr,f0_max,f0_min,10)
|
83 |
+
if(filter_radius>2):
|
84 |
f0 = signal.medfilt(f0, 3)
|
85 |
elif f0_method == "crepe":
|
86 |
model = "full"
|
|
|
125 |
) + 1
|
126 |
f0_mel[f0_mel <= 1] = 1
|
127 |
f0_mel[f0_mel > 255] = 255
|
128 |
+
f0_coarse = np.rint(f0_mel).astype(int)
|
129 |
return f0_coarse, f0bak # 1-0
|
130 |
|
131 |
def vc(
|
|
|
141 |
big_npy,
|
142 |
index_rate,
|
143 |
version,
|
|
|
144 |
): # ,file_index,file_big_npy
|
145 |
feats = torch.from_numpy(audio0)
|
146 |
if self.is_half:
|
|
|
161 |
t0 = ttime()
|
162 |
with torch.no_grad():
|
163 |
logits = model.extract_features(**inputs)
|
164 |
+
feats = model.final_proj(logits[0])if version=="v1"else logits[0]
|
165 |
+
|
|
|
166 |
if (
|
167 |
isinstance(index, type(None)) == False
|
168 |
and isinstance(big_npy, type(None)) == False
|
|
|
188 |
)
|
189 |
|
190 |
feats = F.interpolate(feats.permute(0, 2, 1), scale_factor=2).permute(0, 2, 1)
|
|
|
|
|
|
|
|
|
191 |
t1 = ttime()
|
192 |
p_len = audio0.shape[0] // self.window
|
193 |
if feats.shape[1] < p_len:
|
|
|
195 |
if pitch != None and pitchf != None:
|
196 |
pitch = pitch[:, :p_len]
|
197 |
pitchf = pitchf[:, :p_len]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
198 |
p_len = torch.tensor([p_len], device=self.device).long()
|
199 |
with torch.no_grad():
|
200 |
if pitch != None and pitchf != None:
|
|
|
206 |
)
|
207 |
else:
|
208 |
audio1 = (
|
209 |
+
(net_g.infer(feats, p_len, sid)[0][0, 0])
|
210 |
+
.data.cpu()
|
211 |
+
.float()
|
212 |
+
.numpy()
|
213 |
)
|
214 |
del feats, p_len, padding_mask
|
215 |
if torch.cuda.is_available():
|
|
|
238 |
resample_sr,
|
239 |
rms_mix_rate,
|
240 |
version,
|
|
|
241 |
f0_file=None,
|
242 |
):
|
243 |
if (
|
|
|
292 |
sid = torch.tensor(sid, device=self.device).unsqueeze(0).long()
|
293 |
pitch, pitchf = None, None
|
294 |
if if_f0 == 1:
|
295 |
+
pitch, pitchf = self.get_f0(input_audio_path,audio_pad, p_len, f0_up_key, f0_method,filter_radius, inp_f0)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
296 |
pitch = pitch[:p_len]
|
297 |
pitchf = pitchf[:p_len]
|
298 |
if self.device == "mps":
|
|
|
317 |
big_npy,
|
318 |
index_rate,
|
319 |
version,
|
|
|
320 |
)[self.t_pad_tgt : -self.t_pad_tgt]
|
321 |
)
|
322 |
else:
|
|
|
333 |
big_npy,
|
334 |
index_rate,
|
335 |
version,
|
|
|
336 |
)[self.t_pad_tgt : -self.t_pad_tgt]
|
337 |
)
|
338 |
s = t
|
|
|
350 |
big_npy,
|
351 |
index_rate,
|
352 |
version,
|
|
|
353 |
)[self.t_pad_tgt : -self.t_pad_tgt]
|
354 |
)
|
355 |
else:
|
|
|
366 |
big_npy,
|
367 |
index_rate,
|
368 |
version,
|
|
|
369 |
)[self.t_pad_tgt : -self.t_pad_tgt]
|
370 |
)
|
371 |
audio_opt = np.concatenate(audio_opt)
|
372 |
+
if(rms_mix_rate!=1):
|
373 |
+
audio_opt=change_rms(audio,16000,audio_opt,tgt_sr,rms_mix_rate)
|
374 |
+
if(resample_sr>=16000 and tgt_sr!=resample_sr):
|
375 |
audio_opt = librosa.resample(
|
376 |
audio_opt, orig_sr=tgt_sr, target_sr=resample_sr
|
377 |
)
|
378 |
+
audio_max=np.abs(audio_opt).max()/0.99
|
379 |
+
max_int16=32768
|
380 |
+
if(audio_max>1):max_int16/=audio_max
|
381 |
+
audio_opt=(audio_opt * max_int16).astype(np.int16)
|
|
|
382 |
del pitch, pitchf, sid
|
383 |
if torch.cuda.is_available():
|
384 |
torch.cuda.empty_cache()
|