File size: 10,426 Bytes
e8aa256
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
# Copyright (c) 2023 Dominic Rampas MIT License
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import math

import numpy as np
import torch
import torch.nn as nn

from ...configuration_utils import ConfigMixin, register_to_config
from ...models.modeling_utils import ModelMixin
from .modeling_wuerstchen_common import AttnBlock, GlobalResponseNorm, TimestepBlock, WuerstchenLayerNorm


class WuerstchenDiffNeXt(ModelMixin, ConfigMixin):
    @register_to_config
    def __init__(
        self,
        c_in=4,
        c_out=4,
        c_r=64,
        patch_size=2,
        c_cond=1024,
        c_hidden=[320, 640, 1280, 1280],
        nhead=[-1, 10, 20, 20],
        blocks=[4, 4, 14, 4],
        level_config=["CT", "CTA", "CTA", "CTA"],
        inject_effnet=[False, True, True, True],
        effnet_embd=16,
        clip_embd=1024,
        kernel_size=3,
        dropout=0.1,
    ):
        super().__init__()
        self.c_r = c_r
        self.c_cond = c_cond
        if not isinstance(dropout, list):
            dropout = [dropout] * len(c_hidden)

        # CONDITIONING
        self.clip_mapper = nn.Linear(clip_embd, c_cond)
        self.effnet_mappers = nn.ModuleList(
            [
                nn.Conv2d(effnet_embd, c_cond, kernel_size=1) if inject else None
                for inject in inject_effnet + list(reversed(inject_effnet))
            ]
        )
        self.seq_norm = nn.LayerNorm(c_cond, elementwise_affine=False, eps=1e-6)

        self.embedding = nn.Sequential(
            nn.PixelUnshuffle(patch_size),
            nn.Conv2d(c_in * (patch_size**2), c_hidden[0], kernel_size=1),
            WuerstchenLayerNorm(c_hidden[0], elementwise_affine=False, eps=1e-6),
        )

        def get_block(block_type, c_hidden, nhead, c_skip=0, dropout=0):
            if block_type == "C":
                return ResBlockStageB(c_hidden, c_skip, kernel_size=kernel_size, dropout=dropout)
            elif block_type == "A":
                return AttnBlock(c_hidden, c_cond, nhead, self_attn=True, dropout=dropout)
            elif block_type == "T":
                return TimestepBlock(c_hidden, c_r)
            else:
                raise ValueError(f"Block type {block_type} not supported")

        # BLOCKS
        # -- down blocks
        self.down_blocks = nn.ModuleList()
        for i in range(len(c_hidden)):
            down_block = nn.ModuleList()
            if i > 0:
                down_block.append(
                    nn.Sequential(
                        WuerstchenLayerNorm(c_hidden[i - 1], elementwise_affine=False, eps=1e-6),
                        nn.Conv2d(c_hidden[i - 1], c_hidden[i], kernel_size=2, stride=2),
                    )
                )
            for _ in range(blocks[i]):
                for block_type in level_config[i]:
                    c_skip = c_cond if inject_effnet[i] else 0
                    down_block.append(get_block(block_type, c_hidden[i], nhead[i], c_skip=c_skip, dropout=dropout[i]))
            self.down_blocks.append(down_block)

        # -- up blocks
        self.up_blocks = nn.ModuleList()
        for i in reversed(range(len(c_hidden))):
            up_block = nn.ModuleList()
            for j in range(blocks[i]):
                for k, block_type in enumerate(level_config[i]):
                    c_skip = c_hidden[i] if i < len(c_hidden) - 1 and j == k == 0 else 0
                    c_skip += c_cond if inject_effnet[i] else 0
                    up_block.append(get_block(block_type, c_hidden[i], nhead[i], c_skip=c_skip, dropout=dropout[i]))
            if i > 0:
                up_block.append(
                    nn.Sequential(
                        WuerstchenLayerNorm(c_hidden[i], elementwise_affine=False, eps=1e-6),
                        nn.ConvTranspose2d(c_hidden[i], c_hidden[i - 1], kernel_size=2, stride=2),
                    )
                )
            self.up_blocks.append(up_block)

        # OUTPUT
        self.clf = nn.Sequential(
            WuerstchenLayerNorm(c_hidden[0], elementwise_affine=False, eps=1e-6),
            nn.Conv2d(c_hidden[0], 2 * c_out * (patch_size**2), kernel_size=1),
            nn.PixelShuffle(patch_size),
        )

        # --- WEIGHT INIT ---
        self.apply(self._init_weights)

    def _init_weights(self, m):
        # General init
        if isinstance(m, (nn.Conv2d, nn.Linear)):
            nn.init.xavier_uniform_(m.weight)
            if m.bias is not None:
                nn.init.constant_(m.bias, 0)

        for mapper in self.effnet_mappers:
            if mapper is not None:
                nn.init.normal_(mapper.weight, std=0.02)  # conditionings
        nn.init.normal_(self.clip_mapper.weight, std=0.02)  # conditionings
        nn.init.xavier_uniform_(self.embedding[1].weight, 0.02)  # inputs
        nn.init.constant_(self.clf[1].weight, 0)  # outputs

        # blocks
        for level_block in self.down_blocks + self.up_blocks:
            for block in level_block:
                if isinstance(block, ResBlockStageB):
                    block.channelwise[-1].weight.data *= np.sqrt(1 / sum(self.config.blocks))
                elif isinstance(block, TimestepBlock):
                    nn.init.constant_(block.mapper.weight, 0)

    def gen_r_embedding(self, r, max_positions=10000):
        r = r * max_positions
        half_dim = self.c_r // 2
        emb = math.log(max_positions) / (half_dim - 1)
        emb = torch.arange(half_dim, device=r.device).float().mul(-emb).exp()
        emb = r[:, None] * emb[None, :]
        emb = torch.cat([emb.sin(), emb.cos()], dim=1)
        if self.c_r % 2 == 1:  # zero pad
            emb = nn.functional.pad(emb, (0, 1), mode="constant")
        return emb.to(dtype=r.dtype)

    def gen_c_embeddings(self, clip):
        clip = self.clip_mapper(clip)
        clip = self.seq_norm(clip)
        return clip

    def _down_encode(self, x, r_embed, effnet, clip=None):
        level_outputs = []
        for i, down_block in enumerate(self.down_blocks):
            effnet_c = None
            for block in down_block:
                if isinstance(block, ResBlockStageB):
                    if effnet_c is None and self.effnet_mappers[i] is not None:
                        dtype = effnet.dtype
                        effnet_c = self.effnet_mappers[i](
                            nn.functional.interpolate(
                                effnet.float(), size=x.shape[-2:], mode="bicubic", antialias=True, align_corners=True
                            ).to(dtype)
                        )
                    skip = effnet_c if self.effnet_mappers[i] is not None else None
                    x = block(x, skip)
                elif isinstance(block, AttnBlock):
                    x = block(x, clip)
                elif isinstance(block, TimestepBlock):
                    x = block(x, r_embed)
                else:
                    x = block(x)
            level_outputs.insert(0, x)
        return level_outputs

    def _up_decode(self, level_outputs, r_embed, effnet, clip=None):
        x = level_outputs[0]
        for i, up_block in enumerate(self.up_blocks):
            effnet_c = None
            for j, block in enumerate(up_block):
                if isinstance(block, ResBlockStageB):
                    if effnet_c is None and self.effnet_mappers[len(self.down_blocks) + i] is not None:
                        dtype = effnet.dtype
                        effnet_c = self.effnet_mappers[len(self.down_blocks) + i](
                            nn.functional.interpolate(
                                effnet.float(), size=x.shape[-2:], mode="bicubic", antialias=True, align_corners=True
                            ).to(dtype)
                        )
                    skip = level_outputs[i] if j == 0 and i > 0 else None
                    if effnet_c is not None:
                        if skip is not None:
                            skip = torch.cat([skip, effnet_c], dim=1)
                        else:
                            skip = effnet_c
                    x = block(x, skip)
                elif isinstance(block, AttnBlock):
                    x = block(x, clip)
                elif isinstance(block, TimestepBlock):
                    x = block(x, r_embed)
                else:
                    x = block(x)
        return x

    def forward(self, x, r, effnet, clip=None, x_cat=None, eps=1e-3, return_noise=True):
        if x_cat is not None:
            x = torch.cat([x, x_cat], dim=1)
        # Process the conditioning embeddings
        r_embed = self.gen_r_embedding(r)
        if clip is not None:
            clip = self.gen_c_embeddings(clip)

        # Model Blocks
        x_in = x
        x = self.embedding(x)
        level_outputs = self._down_encode(x, r_embed, effnet, clip)
        x = self._up_decode(level_outputs, r_embed, effnet, clip)
        a, b = self.clf(x).chunk(2, dim=1)
        b = b.sigmoid() * (1 - eps * 2) + eps
        if return_noise:
            return (x_in - a) / b
        else:
            return a, b


class ResBlockStageB(nn.Module):
    def __init__(self, c, c_skip=None, kernel_size=3, dropout=0.0):
        super().__init__()
        self.depthwise = nn.Conv2d(c, c, kernel_size=kernel_size, padding=kernel_size // 2, groups=c)
        self.norm = WuerstchenLayerNorm(c, elementwise_affine=False, eps=1e-6)
        self.channelwise = nn.Sequential(
            nn.Linear(c + c_skip, c * 4),
            nn.GELU(),
            GlobalResponseNorm(c * 4),
            nn.Dropout(dropout),
            nn.Linear(c * 4, c),
        )

    def forward(self, x, x_skip=None):
        x_res = x
        x = self.norm(self.depthwise(x))
        if x_skip is not None:
            x = torch.cat([x, x_skip], dim=1)
        x = self.channelwise(x.permute(0, 2, 3, 1)).permute(0, 3, 1, 2)
        return x + x_res