Dragreal / utils /diffusers /models /unet_kandinsky3.py
BasicNp's picture
Upload 1672 files
e8aa256 verified
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from dataclasses import dataclass
from typing import Dict, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import nn
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput, logging
from .attention_processor import Attention, AttentionProcessor, AttnProcessor
from .embeddings import TimestepEmbedding, Timesteps
from .modeling_utils import ModelMixin
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
@dataclass
class Kandinsky3UNetOutput(BaseOutput):
sample: torch.FloatTensor = None
class Kandinsky3EncoderProj(nn.Module):
def __init__(self, encoder_hid_dim, cross_attention_dim):
super().__init__()
self.projection_linear = nn.Linear(encoder_hid_dim, cross_attention_dim, bias=False)
self.projection_norm = nn.LayerNorm(cross_attention_dim)
def forward(self, x):
x = self.projection_linear(x)
x = self.projection_norm(x)
return x
class Kandinsky3UNet(ModelMixin, ConfigMixin):
@register_to_config
def __init__(
self,
in_channels: int = 4,
time_embedding_dim: int = 1536,
groups: int = 32,
attention_head_dim: int = 64,
layers_per_block: Union[int, Tuple[int]] = 3,
block_out_channels: Tuple[int] = (384, 768, 1536, 3072),
cross_attention_dim: Union[int, Tuple[int]] = 4096,
encoder_hid_dim: int = 4096,
):
super().__init__()
# TOOD(Yiyi): Give better name and put into config for the following 4 parameters
expansion_ratio = 4
compression_ratio = 2
add_cross_attention = (False, True, True, True)
add_self_attention = (False, True, True, True)
out_channels = in_channels
init_channels = block_out_channels[0] // 2
self.time_proj = Timesteps(init_channels, flip_sin_to_cos=False, downscale_freq_shift=1)
self.time_embedding = TimestepEmbedding(
init_channels,
time_embedding_dim,
)
self.add_time_condition = Kandinsky3AttentionPooling(
time_embedding_dim, cross_attention_dim, attention_head_dim
)
self.conv_in = nn.Conv2d(in_channels, init_channels, kernel_size=3, padding=1)
self.encoder_hid_proj = Kandinsky3EncoderProj(encoder_hid_dim, cross_attention_dim)
hidden_dims = [init_channels] + list(block_out_channels)
in_out_dims = list(zip(hidden_dims[:-1], hidden_dims[1:]))
text_dims = [cross_attention_dim if is_exist else None for is_exist in add_cross_attention]
num_blocks = len(block_out_channels) * [layers_per_block]
layer_params = [num_blocks, text_dims, add_self_attention]
rev_layer_params = map(reversed, layer_params)
cat_dims = []
self.num_levels = len(in_out_dims)
self.down_blocks = nn.ModuleList([])
for level, ((in_dim, out_dim), res_block_num, text_dim, self_attention) in enumerate(
zip(in_out_dims, *layer_params)
):
down_sample = level != (self.num_levels - 1)
cat_dims.append(out_dim if level != (self.num_levels - 1) else 0)
self.down_blocks.append(
Kandinsky3DownSampleBlock(
in_dim,
out_dim,
time_embedding_dim,
text_dim,
res_block_num,
groups,
attention_head_dim,
expansion_ratio,
compression_ratio,
down_sample,
self_attention,
)
)
self.up_blocks = nn.ModuleList([])
for level, ((out_dim, in_dim), res_block_num, text_dim, self_attention) in enumerate(
zip(reversed(in_out_dims), *rev_layer_params)
):
up_sample = level != 0
self.up_blocks.append(
Kandinsky3UpSampleBlock(
in_dim,
cat_dims.pop(),
out_dim,
time_embedding_dim,
text_dim,
res_block_num,
groups,
attention_head_dim,
expansion_ratio,
compression_ratio,
up_sample,
self_attention,
)
)
self.conv_norm_out = nn.GroupNorm(groups, init_channels)
self.conv_act_out = nn.SiLU()
self.conv_out = nn.Conv2d(init_channels, out_channels, kernel_size=3, padding=1)
@property
def attn_processors(self) -> Dict[str, AttentionProcessor]:
r"""
Returns:
`dict` of attention processors: A dictionary containing all attention processors used in the model with
indexed by its weight name.
"""
# set recursively
processors = {}
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
if hasattr(module, "set_processor"):
processors[f"{name}.processor"] = module.processor
for sub_name, child in module.named_children():
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
return processors
for name, module in self.named_children():
fn_recursive_add_processors(name, module, processors)
return processors
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
r"""
Sets the attention processor to use to compute attention.
Parameters:
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
The instantiated processor class or a dictionary of processor classes that will be set as the processor
for **all** `Attention` layers.
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
processor. This is strongly recommended when setting trainable attention processors.
"""
count = len(self.attn_processors.keys())
if isinstance(processor, dict) and len(processor) != count:
raise ValueError(
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
)
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
if hasattr(module, "set_processor"):
if not isinstance(processor, dict):
module.set_processor(processor)
else:
module.set_processor(processor.pop(f"{name}.processor"))
for sub_name, child in module.named_children():
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
for name, module in self.named_children():
fn_recursive_attn_processor(name, module, processor)
def set_default_attn_processor(self):
"""
Disables custom attention processors and sets the default attention implementation.
"""
self.set_attn_processor(AttnProcessor())
def _set_gradient_checkpointing(self, module, value=False):
if hasattr(module, "gradient_checkpointing"):
module.gradient_checkpointing = value
def forward(self, sample, timestep, encoder_hidden_states=None, encoder_attention_mask=None, return_dict=True):
if encoder_attention_mask is not None:
encoder_attention_mask = (1 - encoder_attention_mask.to(sample.dtype)) * -10000.0
encoder_attention_mask = encoder_attention_mask.unsqueeze(1)
if not torch.is_tensor(timestep):
dtype = torch.float32 if isinstance(timestep, float) else torch.int32
timestep = torch.tensor([timestep], dtype=dtype, device=sample.device)
elif len(timestep.shape) == 0:
timestep = timestep[None].to(sample.device)
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
timestep = timestep.expand(sample.shape[0])
time_embed_input = self.time_proj(timestep).to(sample.dtype)
time_embed = self.time_embedding(time_embed_input)
encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states)
if encoder_hidden_states is not None:
time_embed = self.add_time_condition(time_embed, encoder_hidden_states, encoder_attention_mask)
hidden_states = []
sample = self.conv_in(sample)
for level, down_sample in enumerate(self.down_blocks):
sample = down_sample(sample, time_embed, encoder_hidden_states, encoder_attention_mask)
if level != self.num_levels - 1:
hidden_states.append(sample)
for level, up_sample in enumerate(self.up_blocks):
if level != 0:
sample = torch.cat([sample, hidden_states.pop()], dim=1)
sample = up_sample(sample, time_embed, encoder_hidden_states, encoder_attention_mask)
sample = self.conv_norm_out(sample)
sample = self.conv_act_out(sample)
sample = self.conv_out(sample)
if not return_dict:
return (sample,)
return Kandinsky3UNetOutput(sample=sample)
class Kandinsky3UpSampleBlock(nn.Module):
def __init__(
self,
in_channels,
cat_dim,
out_channels,
time_embed_dim,
context_dim=None,
num_blocks=3,
groups=32,
head_dim=64,
expansion_ratio=4,
compression_ratio=2,
up_sample=True,
self_attention=True,
):
super().__init__()
up_resolutions = [[None, True if up_sample else None, None, None]] + [[None] * 4] * (num_blocks - 1)
hidden_channels = (
[(in_channels + cat_dim, in_channels)]
+ [(in_channels, in_channels)] * (num_blocks - 2)
+ [(in_channels, out_channels)]
)
attentions = []
resnets_in = []
resnets_out = []
self.self_attention = self_attention
self.context_dim = context_dim
if self_attention:
attentions.append(
Kandinsky3AttentionBlock(out_channels, time_embed_dim, None, groups, head_dim, expansion_ratio)
)
else:
attentions.append(nn.Identity())
for (in_channel, out_channel), up_resolution in zip(hidden_channels, up_resolutions):
resnets_in.append(
Kandinsky3ResNetBlock(in_channel, in_channel, time_embed_dim, groups, compression_ratio, up_resolution)
)
if context_dim is not None:
attentions.append(
Kandinsky3AttentionBlock(
in_channel, time_embed_dim, context_dim, groups, head_dim, expansion_ratio
)
)
else:
attentions.append(nn.Identity())
resnets_out.append(
Kandinsky3ResNetBlock(in_channel, out_channel, time_embed_dim, groups, compression_ratio)
)
self.attentions = nn.ModuleList(attentions)
self.resnets_in = nn.ModuleList(resnets_in)
self.resnets_out = nn.ModuleList(resnets_out)
def forward(self, x, time_embed, context=None, context_mask=None, image_mask=None):
for attention, resnet_in, resnet_out in zip(self.attentions[1:], self.resnets_in, self.resnets_out):
x = resnet_in(x, time_embed)
if self.context_dim is not None:
x = attention(x, time_embed, context, context_mask, image_mask)
x = resnet_out(x, time_embed)
if self.self_attention:
x = self.attentions[0](x, time_embed, image_mask=image_mask)
return x
class Kandinsky3DownSampleBlock(nn.Module):
def __init__(
self,
in_channels,
out_channels,
time_embed_dim,
context_dim=None,
num_blocks=3,
groups=32,
head_dim=64,
expansion_ratio=4,
compression_ratio=2,
down_sample=True,
self_attention=True,
):
super().__init__()
attentions = []
resnets_in = []
resnets_out = []
self.self_attention = self_attention
self.context_dim = context_dim
if self_attention:
attentions.append(
Kandinsky3AttentionBlock(in_channels, time_embed_dim, None, groups, head_dim, expansion_ratio)
)
else:
attentions.append(nn.Identity())
up_resolutions = [[None] * 4] * (num_blocks - 1) + [[None, None, False if down_sample else None, None]]
hidden_channels = [(in_channels, out_channels)] + [(out_channels, out_channels)] * (num_blocks - 1)
for (in_channel, out_channel), up_resolution in zip(hidden_channels, up_resolutions):
resnets_in.append(
Kandinsky3ResNetBlock(in_channel, out_channel, time_embed_dim, groups, compression_ratio)
)
if context_dim is not None:
attentions.append(
Kandinsky3AttentionBlock(
out_channel, time_embed_dim, context_dim, groups, head_dim, expansion_ratio
)
)
else:
attentions.append(nn.Identity())
resnets_out.append(
Kandinsky3ResNetBlock(
out_channel, out_channel, time_embed_dim, groups, compression_ratio, up_resolution
)
)
self.attentions = nn.ModuleList(attentions)
self.resnets_in = nn.ModuleList(resnets_in)
self.resnets_out = nn.ModuleList(resnets_out)
def forward(self, x, time_embed, context=None, context_mask=None, image_mask=None):
if self.self_attention:
x = self.attentions[0](x, time_embed, image_mask=image_mask)
for attention, resnet_in, resnet_out in zip(self.attentions[1:], self.resnets_in, self.resnets_out):
x = resnet_in(x, time_embed)
if self.context_dim is not None:
x = attention(x, time_embed, context, context_mask, image_mask)
x = resnet_out(x, time_embed)
return x
class Kandinsky3ConditionalGroupNorm(nn.Module):
def __init__(self, groups, normalized_shape, context_dim):
super().__init__()
self.norm = nn.GroupNorm(groups, normalized_shape, affine=False)
self.context_mlp = nn.Sequential(nn.SiLU(), nn.Linear(context_dim, 2 * normalized_shape))
self.context_mlp[1].weight.data.zero_()
self.context_mlp[1].bias.data.zero_()
def forward(self, x, context):
context = self.context_mlp(context)
for _ in range(len(x.shape[2:])):
context = context.unsqueeze(-1)
scale, shift = context.chunk(2, dim=1)
x = self.norm(x) * (scale + 1.0) + shift
return x
class Kandinsky3Block(nn.Module):
def __init__(self, in_channels, out_channels, time_embed_dim, kernel_size=3, norm_groups=32, up_resolution=None):
super().__init__()
self.group_norm = Kandinsky3ConditionalGroupNorm(norm_groups, in_channels, time_embed_dim)
self.activation = nn.SiLU()
if up_resolution is not None and up_resolution:
self.up_sample = nn.ConvTranspose2d(in_channels, in_channels, kernel_size=2, stride=2)
else:
self.up_sample = nn.Identity()
padding = int(kernel_size > 1)
self.projection = nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, padding=padding)
if up_resolution is not None and not up_resolution:
self.down_sample = nn.Conv2d(out_channels, out_channels, kernel_size=2, stride=2)
else:
self.down_sample = nn.Identity()
def forward(self, x, time_embed):
x = self.group_norm(x, time_embed)
x = self.activation(x)
x = self.up_sample(x)
x = self.projection(x)
x = self.down_sample(x)
return x
class Kandinsky3ResNetBlock(nn.Module):
def __init__(
self, in_channels, out_channels, time_embed_dim, norm_groups=32, compression_ratio=2, up_resolutions=4 * [None]
):
super().__init__()
kernel_sizes = [1, 3, 3, 1]
hidden_channel = max(in_channels, out_channels) // compression_ratio
hidden_channels = (
[(in_channels, hidden_channel)] + [(hidden_channel, hidden_channel)] * 2 + [(hidden_channel, out_channels)]
)
self.resnet_blocks = nn.ModuleList(
[
Kandinsky3Block(in_channel, out_channel, time_embed_dim, kernel_size, norm_groups, up_resolution)
for (in_channel, out_channel), kernel_size, up_resolution in zip(
hidden_channels, kernel_sizes, up_resolutions
)
]
)
self.shortcut_up_sample = (
nn.ConvTranspose2d(in_channels, in_channels, kernel_size=2, stride=2)
if True in up_resolutions
else nn.Identity()
)
self.shortcut_projection = (
nn.Conv2d(in_channels, out_channels, kernel_size=1) if in_channels != out_channels else nn.Identity()
)
self.shortcut_down_sample = (
nn.Conv2d(out_channels, out_channels, kernel_size=2, stride=2)
if False in up_resolutions
else nn.Identity()
)
def forward(self, x, time_embed):
out = x
for resnet_block in self.resnet_blocks:
out = resnet_block(out, time_embed)
x = self.shortcut_up_sample(x)
x = self.shortcut_projection(x)
x = self.shortcut_down_sample(x)
x = x + out
return x
class Kandinsky3AttentionPooling(nn.Module):
def __init__(self, num_channels, context_dim, head_dim=64):
super().__init__()
self.attention = Attention(
context_dim,
context_dim,
dim_head=head_dim,
out_dim=num_channels,
out_bias=False,
)
def forward(self, x, context, context_mask=None):
context_mask = context_mask.to(dtype=context.dtype)
context = self.attention(context.mean(dim=1, keepdim=True), context, context_mask)
return x + context.squeeze(1)
class Kandinsky3AttentionBlock(nn.Module):
def __init__(self, num_channels, time_embed_dim, context_dim=None, norm_groups=32, head_dim=64, expansion_ratio=4):
super().__init__()
self.in_norm = Kandinsky3ConditionalGroupNorm(norm_groups, num_channels, time_embed_dim)
self.attention = Attention(
num_channels,
context_dim or num_channels,
dim_head=head_dim,
out_dim=num_channels,
out_bias=False,
)
hidden_channels = expansion_ratio * num_channels
self.out_norm = Kandinsky3ConditionalGroupNorm(norm_groups, num_channels, time_embed_dim)
self.feed_forward = nn.Sequential(
nn.Conv2d(num_channels, hidden_channels, kernel_size=1, bias=False),
nn.SiLU(),
nn.Conv2d(hidden_channels, num_channels, kernel_size=1, bias=False),
)
def forward(self, x, time_embed, context=None, context_mask=None, image_mask=None):
height, width = x.shape[-2:]
out = self.in_norm(x, time_embed)
out = out.reshape(x.shape[0], -1, height * width).permute(0, 2, 1)
context = context if context is not None else out
if context_mask is not None:
context_mask = context_mask.to(dtype=context.dtype)
out = self.attention(out, context, context_mask)
out = out.permute(0, 2, 1).unsqueeze(-1).reshape(out.shape[0], -1, height, width)
x = x + out
out = self.out_norm(x, time_embed)
out = self.feed_forward(out)
x = x + out
return x