|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from typing import List, Optional, Tuple, Union |
|
|
|
import torch |
|
|
|
from ...schedulers import DDIMScheduler |
|
from ...utils.torch_utils import randn_tensor |
|
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput |
|
|
|
|
|
class DDIMPipeline(DiffusionPipeline): |
|
r""" |
|
Pipeline for image generation. |
|
|
|
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods |
|
implemented for all pipelines (downloading, saving, running on a particular device, etc.). |
|
|
|
Parameters: |
|
unet ([`UNet2DModel`]): |
|
A `UNet2DModel` to denoise the encoded image latents. |
|
scheduler ([`SchedulerMixin`]): |
|
A scheduler to be used in combination with `unet` to denoise the encoded image. Can be one of |
|
[`DDPMScheduler`], or [`DDIMScheduler`]. |
|
""" |
|
|
|
model_cpu_offload_seq = "unet" |
|
|
|
def __init__(self, unet, scheduler): |
|
super().__init__() |
|
|
|
|
|
scheduler = DDIMScheduler.from_config(scheduler.config) |
|
|
|
self.register_modules(unet=unet, scheduler=scheduler) |
|
|
|
@torch.no_grad() |
|
def __call__( |
|
self, |
|
batch_size: int = 1, |
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, |
|
eta: float = 0.0, |
|
num_inference_steps: int = 50, |
|
use_clipped_model_output: Optional[bool] = None, |
|
output_type: Optional[str] = "pil", |
|
return_dict: bool = True, |
|
) -> Union[ImagePipelineOutput, Tuple]: |
|
r""" |
|
The call function to the pipeline for generation. |
|
|
|
Args: |
|
batch_size (`int`, *optional*, defaults to 1): |
|
The number of images to generate. |
|
generator (`torch.Generator`, *optional*): |
|
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make |
|
generation deterministic. |
|
eta (`float`, *optional*, defaults to 0.0): |
|
Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies |
|
to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers. A value of `0` corresponds to |
|
DDIM and `1` corresponds to DDPM. |
|
num_inference_steps (`int`, *optional*, defaults to 50): |
|
The number of denoising steps. More denoising steps usually lead to a higher quality image at the |
|
expense of slower inference. |
|
use_clipped_model_output (`bool`, *optional*, defaults to `None`): |
|
If `True` or `False`, see documentation for [`DDIMScheduler.step`]. If `None`, nothing is passed |
|
downstream to the scheduler (use `None` for schedulers which don't support this argument). |
|
output_type (`str`, *optional*, defaults to `"pil"`): |
|
The output format of the generated image. Choose between `PIL.Image` or `np.array`. |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`~pipelines.ImagePipelineOutput`] instead of a plain tuple. |
|
|
|
Example: |
|
|
|
```py |
|
>>> from diffusers import DDIMPipeline |
|
>>> import PIL.Image |
|
>>> import numpy as np |
|
|
|
>>> # load model and scheduler |
|
>>> pipe = DDIMPipeline.from_pretrained("fusing/ddim-lsun-bedroom") |
|
|
|
>>> # run pipeline in inference (sample random noise and denoise) |
|
>>> image = pipe(eta=0.0, num_inference_steps=50) |
|
|
|
>>> # process image to PIL |
|
>>> image_processed = image.cpu().permute(0, 2, 3, 1) |
|
>>> image_processed = (image_processed + 1.0) * 127.5 |
|
>>> image_processed = image_processed.numpy().astype(np.uint8) |
|
>>> image_pil = PIL.Image.fromarray(image_processed[0]) |
|
|
|
>>> # save image |
|
>>> image_pil.save("test.png") |
|
``` |
|
|
|
Returns: |
|
[`~pipelines.ImagePipelineOutput`] or `tuple`: |
|
If `return_dict` is `True`, [`~pipelines.ImagePipelineOutput`] is returned, otherwise a `tuple` is |
|
returned where the first element is a list with the generated images |
|
""" |
|
|
|
|
|
if isinstance(self.unet.config.sample_size, int): |
|
image_shape = ( |
|
batch_size, |
|
self.unet.config.in_channels, |
|
self.unet.config.sample_size, |
|
self.unet.config.sample_size, |
|
) |
|
else: |
|
image_shape = (batch_size, self.unet.config.in_channels, *self.unet.config.sample_size) |
|
|
|
if isinstance(generator, list) and len(generator) != batch_size: |
|
raise ValueError( |
|
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" |
|
f" size of {batch_size}. Make sure the batch size matches the length of the generators." |
|
) |
|
|
|
image = randn_tensor(image_shape, generator=generator, device=self._execution_device, dtype=self.unet.dtype) |
|
|
|
|
|
self.scheduler.set_timesteps(num_inference_steps) |
|
|
|
for t in self.progress_bar(self.scheduler.timesteps): |
|
|
|
model_output = self.unet(image, t).sample |
|
|
|
|
|
|
|
|
|
image = self.scheduler.step( |
|
model_output, t, image, eta=eta, use_clipped_model_output=use_clipped_model_output, generator=generator |
|
).prev_sample |
|
|
|
image = (image / 2 + 0.5).clamp(0, 1) |
|
image = image.cpu().permute(0, 2, 3, 1).numpy() |
|
if output_type == "pil": |
|
image = self.numpy_to_pil(image) |
|
|
|
if not return_dict: |
|
return (image,) |
|
|
|
return ImagePipelineOutput(images=image) |
|
|