|
import html |
|
import inspect |
|
import re |
|
import urllib.parse as ul |
|
from typing import Any, Callable, Dict, List, Optional, Union |
|
|
|
import numpy as np |
|
import PIL.Image |
|
import torch |
|
import torch.nn.functional as F |
|
from transformers import CLIPImageProcessor, T5EncoderModel, T5Tokenizer |
|
|
|
from ...loaders import LoraLoaderMixin |
|
from ...models import UNet2DConditionModel |
|
from ...schedulers import DDPMScheduler |
|
from ...utils import ( |
|
BACKENDS_MAPPING, |
|
PIL_INTERPOLATION, |
|
is_accelerate_available, |
|
is_bs4_available, |
|
is_ftfy_available, |
|
logging, |
|
replace_example_docstring, |
|
) |
|
from ...utils.torch_utils import randn_tensor |
|
from ..pipeline_utils import DiffusionPipeline |
|
from .pipeline_output import IFPipelineOutput |
|
from .safety_checker import IFSafetyChecker |
|
from .watermark import IFWatermarker |
|
|
|
|
|
if is_bs4_available(): |
|
from bs4 import BeautifulSoup |
|
|
|
if is_ftfy_available(): |
|
import ftfy |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
|
|
def resize(images: PIL.Image.Image, img_size: int) -> PIL.Image.Image: |
|
w, h = images.size |
|
|
|
coef = w / h |
|
|
|
w, h = img_size, img_size |
|
|
|
if coef >= 1: |
|
w = int(round(img_size / 8 * coef) * 8) |
|
else: |
|
h = int(round(img_size / 8 / coef) * 8) |
|
|
|
images = images.resize((w, h), resample=PIL_INTERPOLATION["bicubic"], reducing_gap=None) |
|
|
|
return images |
|
|
|
|
|
EXAMPLE_DOC_STRING = """ |
|
Examples: |
|
```py |
|
>>> from diffusers import IFImg2ImgPipeline, IFImg2ImgSuperResolutionPipeline, DiffusionPipeline |
|
>>> from diffusers.utils import pt_to_pil |
|
>>> import torch |
|
>>> from PIL import Image |
|
>>> import requests |
|
>>> from io import BytesIO |
|
|
|
>>> url = "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/assets/stable-samples/img2img/sketch-mountains-input.jpg" |
|
>>> response = requests.get(url) |
|
>>> original_image = Image.open(BytesIO(response.content)).convert("RGB") |
|
>>> original_image = original_image.resize((768, 512)) |
|
|
|
>>> pipe = IFImg2ImgPipeline.from_pretrained( |
|
... "DeepFloyd/IF-I-XL-v1.0", |
|
... variant="fp16", |
|
... torch_dtype=torch.float16, |
|
... ) |
|
>>> pipe.enable_model_cpu_offload() |
|
|
|
>>> prompt = "A fantasy landscape in style minecraft" |
|
>>> prompt_embeds, negative_embeds = pipe.encode_prompt(prompt) |
|
|
|
>>> image = pipe( |
|
... image=original_image, |
|
... prompt_embeds=prompt_embeds, |
|
... negative_prompt_embeds=negative_embeds, |
|
... output_type="pt", |
|
... ).images |
|
|
|
>>> # save intermediate image |
|
>>> pil_image = pt_to_pil(image) |
|
>>> pil_image[0].save("./if_stage_I.png") |
|
|
|
>>> super_res_1_pipe = IFImg2ImgSuperResolutionPipeline.from_pretrained( |
|
... "DeepFloyd/IF-II-L-v1.0", |
|
... text_encoder=None, |
|
... variant="fp16", |
|
... torch_dtype=torch.float16, |
|
... ) |
|
>>> super_res_1_pipe.enable_model_cpu_offload() |
|
|
|
>>> image = super_res_1_pipe( |
|
... image=image, |
|
... original_image=original_image, |
|
... prompt_embeds=prompt_embeds, |
|
... negative_prompt_embeds=negative_embeds, |
|
... ).images |
|
>>> image[0].save("./if_stage_II.png") |
|
``` |
|
""" |
|
|
|
|
|
class IFImg2ImgSuperResolutionPipeline(DiffusionPipeline, LoraLoaderMixin): |
|
tokenizer: T5Tokenizer |
|
text_encoder: T5EncoderModel |
|
|
|
unet: UNet2DConditionModel |
|
scheduler: DDPMScheduler |
|
image_noising_scheduler: DDPMScheduler |
|
|
|
feature_extractor: Optional[CLIPImageProcessor] |
|
safety_checker: Optional[IFSafetyChecker] |
|
|
|
watermarker: Optional[IFWatermarker] |
|
|
|
bad_punct_regex = re.compile( |
|
r"[" |
|
+ "#®•©™&@·º½¾¿¡§~" |
|
+ r"\)" |
|
+ r"\(" |
|
+ r"\]" |
|
+ r"\[" |
|
+ r"\}" |
|
+ r"\{" |
|
+ r"\|" |
|
+ "\\" |
|
+ r"\/" |
|
+ r"\*" |
|
+ r"]{1,}" |
|
) |
|
|
|
_optional_components = ["tokenizer", "text_encoder", "safety_checker", "feature_extractor"] |
|
model_cpu_offload_seq = "text_encoder->unet" |
|
|
|
def __init__( |
|
self, |
|
tokenizer: T5Tokenizer, |
|
text_encoder: T5EncoderModel, |
|
unet: UNet2DConditionModel, |
|
scheduler: DDPMScheduler, |
|
image_noising_scheduler: DDPMScheduler, |
|
safety_checker: Optional[IFSafetyChecker], |
|
feature_extractor: Optional[CLIPImageProcessor], |
|
watermarker: Optional[IFWatermarker], |
|
requires_safety_checker: bool = True, |
|
): |
|
super().__init__() |
|
|
|
if safety_checker is None and requires_safety_checker: |
|
logger.warning( |
|
f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" |
|
" that you abide to the conditions of the IF license and do not expose unfiltered" |
|
" results in services or applications open to the public. Both the diffusers team and Hugging Face" |
|
" strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling" |
|
" it only for use-cases that involve analyzing network behavior or auditing its results. For more" |
|
" information, please have a look at https://github.com/huggingface/diffusers/pull/254 ." |
|
) |
|
|
|
if safety_checker is not None and feature_extractor is None: |
|
raise ValueError( |
|
"Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety" |
|
" checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead." |
|
) |
|
|
|
if unet.config.in_channels != 6: |
|
logger.warn( |
|
"It seems like you have loaded a checkpoint that shall not be used for super resolution from {unet.config._name_or_path} as it accepts {unet.config.in_channels} input channels instead of 6. Please make sure to pass a super resolution checkpoint as the `'unet'`: IFSuperResolutionPipeline.from_pretrained(unet=super_resolution_unet, ...)`." |
|
) |
|
|
|
self.register_modules( |
|
tokenizer=tokenizer, |
|
text_encoder=text_encoder, |
|
unet=unet, |
|
scheduler=scheduler, |
|
image_noising_scheduler=image_noising_scheduler, |
|
safety_checker=safety_checker, |
|
feature_extractor=feature_extractor, |
|
watermarker=watermarker, |
|
) |
|
self.register_to_config(requires_safety_checker=requires_safety_checker) |
|
|
|
|
|
def remove_all_hooks(self): |
|
if is_accelerate_available(): |
|
from accelerate.hooks import remove_hook_from_module |
|
else: |
|
raise ImportError("Please install accelerate via `pip install accelerate`") |
|
|
|
for model in [self.text_encoder, self.unet, self.safety_checker]: |
|
if model is not None: |
|
remove_hook_from_module(model, recurse=True) |
|
|
|
self.unet_offload_hook = None |
|
self.text_encoder_offload_hook = None |
|
self.final_offload_hook = None |
|
|
|
|
|
def _text_preprocessing(self, text, clean_caption=False): |
|
if clean_caption and not is_bs4_available(): |
|
logger.warn(BACKENDS_MAPPING["bs4"][-1].format("Setting `clean_caption=True`")) |
|
logger.warn("Setting `clean_caption` to False...") |
|
clean_caption = False |
|
|
|
if clean_caption and not is_ftfy_available(): |
|
logger.warn(BACKENDS_MAPPING["ftfy"][-1].format("Setting `clean_caption=True`")) |
|
logger.warn("Setting `clean_caption` to False...") |
|
clean_caption = False |
|
|
|
if not isinstance(text, (tuple, list)): |
|
text = [text] |
|
|
|
def process(text: str): |
|
if clean_caption: |
|
text = self._clean_caption(text) |
|
text = self._clean_caption(text) |
|
else: |
|
text = text.lower().strip() |
|
return text |
|
|
|
return [process(t) for t in text] |
|
|
|
|
|
def _clean_caption(self, caption): |
|
caption = str(caption) |
|
caption = ul.unquote_plus(caption) |
|
caption = caption.strip().lower() |
|
caption = re.sub("<person>", "person", caption) |
|
|
|
caption = re.sub( |
|
r"\b((?:https?:(?:\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\w/-]*\b\/?(?!@)))", |
|
"", |
|
caption, |
|
) |
|
caption = re.sub( |
|
r"\b((?:www:(?:\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\w/-]*\b\/?(?!@)))", |
|
"", |
|
caption, |
|
) |
|
|
|
caption = BeautifulSoup(caption, features="html.parser").text |
|
|
|
|
|
caption = re.sub(r"@[\w\d]+\b", "", caption) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
caption = re.sub(r"[\u31c0-\u31ef]+", "", caption) |
|
caption = re.sub(r"[\u31f0-\u31ff]+", "", caption) |
|
caption = re.sub(r"[\u3200-\u32ff]+", "", caption) |
|
caption = re.sub(r"[\u3300-\u33ff]+", "", caption) |
|
caption = re.sub(r"[\u3400-\u4dbf]+", "", caption) |
|
caption = re.sub(r"[\u4dc0-\u4dff]+", "", caption) |
|
caption = re.sub(r"[\u4e00-\u9fff]+", "", caption) |
|
|
|
|
|
|
|
caption = re.sub( |
|
r"[\u002D\u058A\u05BE\u1400\u1806\u2010-\u2015\u2E17\u2E1A\u2E3A\u2E3B\u2E40\u301C\u3030\u30A0\uFE31\uFE32\uFE58\uFE63\uFF0D]+", |
|
"-", |
|
caption, |
|
) |
|
|
|
|
|
caption = re.sub(r"[`´«»“”¨]", '"', caption) |
|
caption = re.sub(r"[‘’]", "'", caption) |
|
|
|
|
|
caption = re.sub(r""?", "", caption) |
|
|
|
caption = re.sub(r"&", "", caption) |
|
|
|
|
|
caption = re.sub(r"\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}", " ", caption) |
|
|
|
|
|
caption = re.sub(r"\d:\d\d\s+$", "", caption) |
|
|
|
|
|
caption = re.sub(r"\\n", " ", caption) |
|
|
|
|
|
caption = re.sub(r"#\d{1,3}\b", "", caption) |
|
|
|
caption = re.sub(r"#\d{5,}\b", "", caption) |
|
|
|
caption = re.sub(r"\b\d{6,}\b", "", caption) |
|
|
|
caption = re.sub(r"[\S]+\.(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)", "", caption) |
|
|
|
|
|
caption = re.sub(r"[\"\']{2,}", r'"', caption) |
|
caption = re.sub(r"[\.]{2,}", r" ", caption) |
|
|
|
caption = re.sub(self.bad_punct_regex, r" ", caption) |
|
caption = re.sub(r"\s+\.\s+", r" ", caption) |
|
|
|
|
|
regex2 = re.compile(r"(?:\-|\_)") |
|
if len(re.findall(regex2, caption)) > 3: |
|
caption = re.sub(regex2, " ", caption) |
|
|
|
caption = ftfy.fix_text(caption) |
|
caption = html.unescape(html.unescape(caption)) |
|
|
|
caption = re.sub(r"\b[a-zA-Z]{1,3}\d{3,15}\b", "", caption) |
|
caption = re.sub(r"\b[a-zA-Z]+\d+[a-zA-Z]+\b", "", caption) |
|
caption = re.sub(r"\b\d+[a-zA-Z]+\d+\b", "", caption) |
|
|
|
caption = re.sub(r"(worldwide\s+)?(free\s+)?shipping", "", caption) |
|
caption = re.sub(r"(free\s)?download(\sfree)?", "", caption) |
|
caption = re.sub(r"\bclick\b\s(?:for|on)\s\w+", "", caption) |
|
caption = re.sub(r"\b(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)(\simage[s]?)?", "", caption) |
|
caption = re.sub(r"\bpage\s+\d+\b", "", caption) |
|
|
|
caption = re.sub(r"\b\d*[a-zA-Z]+\d+[a-zA-Z]+\d+[a-zA-Z\d]*\b", r" ", caption) |
|
|
|
caption = re.sub(r"\b\d+\.?\d*[xх×]\d+\.?\d*\b", "", caption) |
|
|
|
caption = re.sub(r"\b\s+\:\s+", r": ", caption) |
|
caption = re.sub(r"(\D[,\./])\b", r"\1 ", caption) |
|
caption = re.sub(r"\s+", " ", caption) |
|
|
|
caption.strip() |
|
|
|
caption = re.sub(r"^[\"\']([\w\W]+)[\"\']$", r"\1", caption) |
|
caption = re.sub(r"^[\'\_,\-\:;]", r"", caption) |
|
caption = re.sub(r"[\'\_,\-\:\-\+]$", r"", caption) |
|
caption = re.sub(r"^\.\S+$", "", caption) |
|
|
|
return caption.strip() |
|
|
|
@torch.no_grad() |
|
|
|
def encode_prompt( |
|
self, |
|
prompt: Union[str, List[str]], |
|
do_classifier_free_guidance: bool = True, |
|
num_images_per_prompt: int = 1, |
|
device: Optional[torch.device] = None, |
|
negative_prompt: Optional[Union[str, List[str]]] = None, |
|
prompt_embeds: Optional[torch.FloatTensor] = None, |
|
negative_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
clean_caption: bool = False, |
|
): |
|
r""" |
|
Encodes the prompt into text encoder hidden states. |
|
|
|
Args: |
|
prompt (`str` or `List[str]`, *optional*): |
|
prompt to be encoded |
|
do_classifier_free_guidance (`bool`, *optional*, defaults to `True`): |
|
whether to use classifier free guidance or not |
|
num_images_per_prompt (`int`, *optional*, defaults to 1): |
|
number of images that should be generated per prompt |
|
device: (`torch.device`, *optional*): |
|
torch device to place the resulting embeddings on |
|
negative_prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts not to guide the image generation. If not defined, one has to pass |
|
`negative_prompt_embeds`. instead. If not defined, one has to pass `negative_prompt_embeds`. instead. |
|
Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). |
|
prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not |
|
provided, text embeddings will be generated from `prompt` input argument. |
|
negative_prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt |
|
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input |
|
argument. |
|
clean_caption (bool, defaults to `False`): |
|
If `True`, the function will preprocess and clean the provided caption before encoding. |
|
""" |
|
if prompt is not None and negative_prompt is not None: |
|
if type(prompt) is not type(negative_prompt): |
|
raise TypeError( |
|
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" |
|
f" {type(prompt)}." |
|
) |
|
|
|
if device is None: |
|
device = self._execution_device |
|
|
|
if prompt is not None and isinstance(prompt, str): |
|
batch_size = 1 |
|
elif prompt is not None and isinstance(prompt, list): |
|
batch_size = len(prompt) |
|
else: |
|
batch_size = prompt_embeds.shape[0] |
|
|
|
|
|
max_length = 77 |
|
|
|
if prompt_embeds is None: |
|
prompt = self._text_preprocessing(prompt, clean_caption=clean_caption) |
|
text_inputs = self.tokenizer( |
|
prompt, |
|
padding="max_length", |
|
max_length=max_length, |
|
truncation=True, |
|
add_special_tokens=True, |
|
return_tensors="pt", |
|
) |
|
text_input_ids = text_inputs.input_ids |
|
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids |
|
|
|
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( |
|
text_input_ids, untruncated_ids |
|
): |
|
removed_text = self.tokenizer.batch_decode(untruncated_ids[:, max_length - 1 : -1]) |
|
logger.warning( |
|
"The following part of your input was truncated because CLIP can only handle sequences up to" |
|
f" {max_length} tokens: {removed_text}" |
|
) |
|
|
|
attention_mask = text_inputs.attention_mask.to(device) |
|
|
|
prompt_embeds = self.text_encoder( |
|
text_input_ids.to(device), |
|
attention_mask=attention_mask, |
|
) |
|
prompt_embeds = prompt_embeds[0] |
|
|
|
if self.text_encoder is not None: |
|
dtype = self.text_encoder.dtype |
|
elif self.unet is not None: |
|
dtype = self.unet.dtype |
|
else: |
|
dtype = None |
|
|
|
prompt_embeds = prompt_embeds.to(dtype=dtype, device=device) |
|
|
|
bs_embed, seq_len, _ = prompt_embeds.shape |
|
|
|
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) |
|
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) |
|
|
|
|
|
if do_classifier_free_guidance and negative_prompt_embeds is None: |
|
uncond_tokens: List[str] |
|
if negative_prompt is None: |
|
uncond_tokens = [""] * batch_size |
|
elif isinstance(negative_prompt, str): |
|
uncond_tokens = [negative_prompt] |
|
elif batch_size != len(negative_prompt): |
|
raise ValueError( |
|
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" |
|
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" |
|
" the batch size of `prompt`." |
|
) |
|
else: |
|
uncond_tokens = negative_prompt |
|
|
|
uncond_tokens = self._text_preprocessing(uncond_tokens, clean_caption=clean_caption) |
|
max_length = prompt_embeds.shape[1] |
|
uncond_input = self.tokenizer( |
|
uncond_tokens, |
|
padding="max_length", |
|
max_length=max_length, |
|
truncation=True, |
|
return_attention_mask=True, |
|
add_special_tokens=True, |
|
return_tensors="pt", |
|
) |
|
attention_mask = uncond_input.attention_mask.to(device) |
|
|
|
negative_prompt_embeds = self.text_encoder( |
|
uncond_input.input_ids.to(device), |
|
attention_mask=attention_mask, |
|
) |
|
negative_prompt_embeds = negative_prompt_embeds[0] |
|
|
|
if do_classifier_free_guidance: |
|
|
|
seq_len = negative_prompt_embeds.shape[1] |
|
|
|
negative_prompt_embeds = negative_prompt_embeds.to(dtype=dtype, device=device) |
|
|
|
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) |
|
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) |
|
|
|
|
|
|
|
|
|
else: |
|
negative_prompt_embeds = None |
|
|
|
return prompt_embeds, negative_prompt_embeds |
|
|
|
|
|
def run_safety_checker(self, image, device, dtype): |
|
if self.safety_checker is not None: |
|
safety_checker_input = self.feature_extractor(self.numpy_to_pil(image), return_tensors="pt").to(device) |
|
image, nsfw_detected, watermark_detected = self.safety_checker( |
|
images=image, |
|
clip_input=safety_checker_input.pixel_values.to(dtype=dtype), |
|
) |
|
else: |
|
nsfw_detected = None |
|
watermark_detected = None |
|
|
|
if hasattr(self, "unet_offload_hook") and self.unet_offload_hook is not None: |
|
self.unet_offload_hook.offload() |
|
|
|
return image, nsfw_detected, watermark_detected |
|
|
|
|
|
def prepare_extra_step_kwargs(self, generator, eta): |
|
|
|
|
|
|
|
|
|
|
|
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) |
|
extra_step_kwargs = {} |
|
if accepts_eta: |
|
extra_step_kwargs["eta"] = eta |
|
|
|
|
|
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) |
|
if accepts_generator: |
|
extra_step_kwargs["generator"] = generator |
|
return extra_step_kwargs |
|
|
|
def check_inputs( |
|
self, |
|
prompt, |
|
image, |
|
original_image, |
|
batch_size, |
|
callback_steps, |
|
negative_prompt=None, |
|
prompt_embeds=None, |
|
negative_prompt_embeds=None, |
|
): |
|
if (callback_steps is None) or ( |
|
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0) |
|
): |
|
raise ValueError( |
|
f"`callback_steps` has to be a positive integer but is {callback_steps} of type" |
|
f" {type(callback_steps)}." |
|
) |
|
|
|
if prompt is not None and prompt_embeds is not None: |
|
raise ValueError( |
|
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" |
|
" only forward one of the two." |
|
) |
|
elif prompt is None and prompt_embeds is None: |
|
raise ValueError( |
|
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." |
|
) |
|
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): |
|
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") |
|
|
|
if negative_prompt is not None and negative_prompt_embeds is not None: |
|
raise ValueError( |
|
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" |
|
f" {negative_prompt_embeds}. Please make sure to only forward one of the two." |
|
) |
|
|
|
if prompt_embeds is not None and negative_prompt_embeds is not None: |
|
if prompt_embeds.shape != negative_prompt_embeds.shape: |
|
raise ValueError( |
|
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" |
|
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" |
|
f" {negative_prompt_embeds.shape}." |
|
) |
|
|
|
|
|
|
|
if isinstance(image, list): |
|
check_image_type = image[0] |
|
else: |
|
check_image_type = image |
|
|
|
if ( |
|
not isinstance(check_image_type, torch.Tensor) |
|
and not isinstance(check_image_type, PIL.Image.Image) |
|
and not isinstance(check_image_type, np.ndarray) |
|
): |
|
raise ValueError( |
|
"`image` has to be of type `torch.FloatTensor`, `PIL.Image.Image`, `np.ndarray`, or List[...] but is" |
|
f" {type(check_image_type)}" |
|
) |
|
|
|
if isinstance(image, list): |
|
image_batch_size = len(image) |
|
elif isinstance(image, torch.Tensor): |
|
image_batch_size = image.shape[0] |
|
elif isinstance(image, PIL.Image.Image): |
|
image_batch_size = 1 |
|
elif isinstance(image, np.ndarray): |
|
image_batch_size = image.shape[0] |
|
else: |
|
assert False |
|
|
|
if batch_size != image_batch_size: |
|
raise ValueError(f"image batch size: {image_batch_size} must be same as prompt batch size {batch_size}") |
|
|
|
|
|
|
|
if isinstance(original_image, list): |
|
check_image_type = original_image[0] |
|
else: |
|
check_image_type = original_image |
|
|
|
if ( |
|
not isinstance(check_image_type, torch.Tensor) |
|
and not isinstance(check_image_type, PIL.Image.Image) |
|
and not isinstance(check_image_type, np.ndarray) |
|
): |
|
raise ValueError( |
|
"`original_image` has to be of type `torch.FloatTensor`, `PIL.Image.Image`, `np.ndarray`, or List[...] but is" |
|
f" {type(check_image_type)}" |
|
) |
|
|
|
if isinstance(original_image, list): |
|
image_batch_size = len(original_image) |
|
elif isinstance(original_image, torch.Tensor): |
|
image_batch_size = original_image.shape[0] |
|
elif isinstance(original_image, PIL.Image.Image): |
|
image_batch_size = 1 |
|
elif isinstance(original_image, np.ndarray): |
|
image_batch_size = original_image.shape[0] |
|
else: |
|
assert False |
|
|
|
if batch_size != image_batch_size: |
|
raise ValueError( |
|
f"original_image batch size: {image_batch_size} must be same as prompt batch size {batch_size}" |
|
) |
|
|
|
|
|
def preprocess_original_image(self, image: PIL.Image.Image) -> torch.Tensor: |
|
if not isinstance(image, list): |
|
image = [image] |
|
|
|
def numpy_to_pt(images): |
|
if images.ndim == 3: |
|
images = images[..., None] |
|
|
|
images = torch.from_numpy(images.transpose(0, 3, 1, 2)) |
|
return images |
|
|
|
if isinstance(image[0], PIL.Image.Image): |
|
new_image = [] |
|
|
|
for image_ in image: |
|
image_ = image_.convert("RGB") |
|
image_ = resize(image_, self.unet.sample_size) |
|
image_ = np.array(image_) |
|
image_ = image_.astype(np.float32) |
|
image_ = image_ / 127.5 - 1 |
|
new_image.append(image_) |
|
|
|
image = new_image |
|
|
|
image = np.stack(image, axis=0) |
|
image = numpy_to_pt(image) |
|
|
|
elif isinstance(image[0], np.ndarray): |
|
image = np.concatenate(image, axis=0) if image[0].ndim == 4 else np.stack(image, axis=0) |
|
image = numpy_to_pt(image) |
|
|
|
elif isinstance(image[0], torch.Tensor): |
|
image = torch.cat(image, axis=0) if image[0].ndim == 4 else torch.stack(image, axis=0) |
|
|
|
return image |
|
|
|
|
|
def preprocess_image(self, image: PIL.Image.Image, num_images_per_prompt, device) -> torch.Tensor: |
|
if not isinstance(image, torch.Tensor) and not isinstance(image, list): |
|
image = [image] |
|
|
|
if isinstance(image[0], PIL.Image.Image): |
|
image = [np.array(i).astype(np.float32) / 127.5 - 1.0 for i in image] |
|
|
|
image = np.stack(image, axis=0) |
|
image = torch.from_numpy(image.transpose(0, 3, 1, 2)) |
|
elif isinstance(image[0], np.ndarray): |
|
image = np.stack(image, axis=0) |
|
if image.ndim == 5: |
|
image = image[0] |
|
|
|
image = torch.from_numpy(image.transpose(0, 3, 1, 2)) |
|
elif isinstance(image, list) and isinstance(image[0], torch.Tensor): |
|
dims = image[0].ndim |
|
|
|
if dims == 3: |
|
image = torch.stack(image, dim=0) |
|
elif dims == 4: |
|
image = torch.concat(image, dim=0) |
|
else: |
|
raise ValueError(f"Image must have 3 or 4 dimensions, instead got {dims}") |
|
|
|
image = image.to(device=device, dtype=self.unet.dtype) |
|
|
|
image = image.repeat_interleave(num_images_per_prompt, dim=0) |
|
|
|
return image |
|
|
|
|
|
def get_timesteps(self, num_inference_steps, strength): |
|
|
|
init_timestep = min(int(num_inference_steps * strength), num_inference_steps) |
|
|
|
t_start = max(num_inference_steps - init_timestep, 0) |
|
timesteps = self.scheduler.timesteps[t_start:] |
|
|
|
return timesteps, num_inference_steps - t_start |
|
|
|
|
|
def prepare_intermediate_images( |
|
self, image, timestep, batch_size, num_images_per_prompt, dtype, device, generator=None |
|
): |
|
_, channels, height, width = image.shape |
|
|
|
batch_size = batch_size * num_images_per_prompt |
|
|
|
shape = (batch_size, channels, height, width) |
|
|
|
if isinstance(generator, list) and len(generator) != batch_size: |
|
raise ValueError( |
|
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" |
|
f" size of {batch_size}. Make sure the batch size matches the length of the generators." |
|
) |
|
|
|
noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype) |
|
|
|
image = image.repeat_interleave(num_images_per_prompt, dim=0) |
|
image = self.scheduler.add_noise(image, noise, timestep) |
|
|
|
return image |
|
|
|
@torch.no_grad() |
|
@replace_example_docstring(EXAMPLE_DOC_STRING) |
|
def __call__( |
|
self, |
|
image: Union[PIL.Image.Image, np.ndarray, torch.FloatTensor], |
|
original_image: Union[ |
|
PIL.Image.Image, torch.Tensor, np.ndarray, List[PIL.Image.Image], List[torch.Tensor], List[np.ndarray] |
|
] = None, |
|
strength: float = 0.8, |
|
prompt: Union[str, List[str]] = None, |
|
num_inference_steps: int = 50, |
|
timesteps: List[int] = None, |
|
guidance_scale: float = 4.0, |
|
negative_prompt: Optional[Union[str, List[str]]] = None, |
|
num_images_per_prompt: Optional[int] = 1, |
|
eta: float = 0.0, |
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, |
|
prompt_embeds: Optional[torch.FloatTensor] = None, |
|
negative_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
output_type: Optional[str] = "pil", |
|
return_dict: bool = True, |
|
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, |
|
callback_steps: int = 1, |
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None, |
|
noise_level: int = 250, |
|
clean_caption: bool = True, |
|
): |
|
""" |
|
Function invoked when calling the pipeline for generation. |
|
|
|
Args: |
|
image (`torch.FloatTensor` or `PIL.Image.Image`): |
|
`Image`, or tensor representing an image batch, that will be used as the starting point for the |
|
process. |
|
original_image (`torch.FloatTensor` or `PIL.Image.Image`): |
|
The original image that `image` was varied from. |
|
strength (`float`, *optional*, defaults to 0.8): |
|
Conceptually, indicates how much to transform the reference `image`. Must be between 0 and 1. `image` |
|
will be used as a starting point, adding more noise to it the larger the `strength`. The number of |
|
denoising steps depends on the amount of noise initially added. When `strength` is 1, added noise will |
|
be maximum and the denoising process will run for the full number of iterations specified in |
|
`num_inference_steps`. A value of 1, therefore, essentially ignores `image`. |
|
prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. |
|
instead. |
|
num_inference_steps (`int`, *optional*, defaults to 50): |
|
The number of denoising steps. More denoising steps usually lead to a higher quality image at the |
|
expense of slower inference. |
|
timesteps (`List[int]`, *optional*): |
|
Custom timesteps to use for the denoising process. If not defined, equal spaced `num_inference_steps` |
|
timesteps are used. Must be in descending order. |
|
guidance_scale (`float`, *optional*, defaults to 4.0): |
|
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). |
|
`guidance_scale` is defined as `w` of equation 2. of [Imagen |
|
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > |
|
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, |
|
usually at the expense of lower image quality. |
|
negative_prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts not to guide the image generation. If not defined, one has to pass |
|
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is |
|
less than `1`). |
|
num_images_per_prompt (`int`, *optional*, defaults to 1): |
|
The number of images to generate per prompt. |
|
eta (`float`, *optional*, defaults to 0.0): |
|
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to |
|
[`schedulers.DDIMScheduler`], will be ignored for others. |
|
generator (`torch.Generator` or `List[torch.Generator]`, *optional*): |
|
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) |
|
to make generation deterministic. |
|
prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not |
|
provided, text embeddings will be generated from `prompt` input argument. |
|
negative_prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt |
|
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input |
|
argument. |
|
output_type (`str`, *optional*, defaults to `"pil"`): |
|
The output format of the generate image. Choose between |
|
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`~pipelines.stable_diffusion.IFPipelineOutput`] instead of a plain tuple. |
|
callback (`Callable`, *optional*): |
|
A function that will be called every `callback_steps` steps during inference. The function will be |
|
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. |
|
callback_steps (`int`, *optional*, defaults to 1): |
|
The frequency at which the `callback` function will be called. If not specified, the callback will be |
|
called at every step. |
|
cross_attention_kwargs (`dict`, *optional*): |
|
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under |
|
`self.processor` in |
|
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). |
|
noise_level (`int`, *optional*, defaults to 250): |
|
The amount of noise to add to the upscaled image. Must be in the range `[0, 1000)` |
|
clean_caption (`bool`, *optional*, defaults to `True`): |
|
Whether or not to clean the caption before creating embeddings. Requires `beautifulsoup4` and `ftfy` to |
|
be installed. If the dependencies are not installed, the embeddings will be created from the raw |
|
prompt. |
|
|
|
Examples: |
|
|
|
Returns: |
|
[`~pipelines.stable_diffusion.IFPipelineOutput`] or `tuple`: |
|
[`~pipelines.stable_diffusion.IFPipelineOutput`] if `return_dict` is True, otherwise a `tuple. When |
|
returning a tuple, the first element is a list with the generated images, and the second element is a list |
|
of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work" (nsfw) |
|
or watermarked content, according to the `safety_checker`. |
|
""" |
|
|
|
if prompt is not None and isinstance(prompt, str): |
|
batch_size = 1 |
|
elif prompt is not None and isinstance(prompt, list): |
|
batch_size = len(prompt) |
|
else: |
|
batch_size = prompt_embeds.shape[0] |
|
|
|
self.check_inputs( |
|
prompt, |
|
image, |
|
original_image, |
|
batch_size, |
|
callback_steps, |
|
negative_prompt, |
|
prompt_embeds, |
|
negative_prompt_embeds, |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
do_classifier_free_guidance = guidance_scale > 1.0 |
|
|
|
device = self._execution_device |
|
|
|
|
|
prompt_embeds, negative_prompt_embeds = self.encode_prompt( |
|
prompt, |
|
do_classifier_free_guidance, |
|
num_images_per_prompt=num_images_per_prompt, |
|
device=device, |
|
negative_prompt=negative_prompt, |
|
prompt_embeds=prompt_embeds, |
|
negative_prompt_embeds=negative_prompt_embeds, |
|
clean_caption=clean_caption, |
|
) |
|
|
|
if do_classifier_free_guidance: |
|
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) |
|
|
|
dtype = prompt_embeds.dtype |
|
|
|
|
|
if timesteps is not None: |
|
self.scheduler.set_timesteps(timesteps=timesteps, device=device) |
|
timesteps = self.scheduler.timesteps |
|
num_inference_steps = len(timesteps) |
|
else: |
|
self.scheduler.set_timesteps(num_inference_steps, device=device) |
|
timesteps = self.scheduler.timesteps |
|
|
|
timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength) |
|
|
|
|
|
original_image = self.preprocess_original_image(original_image) |
|
original_image = original_image.to(device=device, dtype=dtype) |
|
|
|
|
|
noise_timestep = timesteps[0:1] |
|
noise_timestep = noise_timestep.repeat(batch_size * num_images_per_prompt) |
|
|
|
intermediate_images = self.prepare_intermediate_images( |
|
original_image, |
|
noise_timestep, |
|
batch_size, |
|
num_images_per_prompt, |
|
dtype, |
|
device, |
|
generator, |
|
) |
|
|
|
|
|
_, _, height, width = original_image.shape |
|
|
|
image = self.preprocess_image(image, num_images_per_prompt, device) |
|
|
|
upscaled = F.interpolate(image, (height, width), mode="bilinear", align_corners=True) |
|
|
|
noise_level = torch.tensor([noise_level] * upscaled.shape[0], device=upscaled.device) |
|
noise = randn_tensor(upscaled.shape, generator=generator, device=upscaled.device, dtype=upscaled.dtype) |
|
upscaled = self.image_noising_scheduler.add_noise(upscaled, noise, timesteps=noise_level) |
|
|
|
if do_classifier_free_guidance: |
|
noise_level = torch.cat([noise_level] * 2) |
|
|
|
|
|
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) |
|
|
|
|
|
if hasattr(self, "text_encoder_offload_hook") and self.text_encoder_offload_hook is not None: |
|
self.text_encoder_offload_hook.offload() |
|
|
|
|
|
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order |
|
with self.progress_bar(total=num_inference_steps) as progress_bar: |
|
for i, t in enumerate(timesteps): |
|
model_input = torch.cat([intermediate_images, upscaled], dim=1) |
|
|
|
model_input = torch.cat([model_input] * 2) if do_classifier_free_guidance else model_input |
|
model_input = self.scheduler.scale_model_input(model_input, t) |
|
|
|
|
|
noise_pred = self.unet( |
|
model_input, |
|
t, |
|
encoder_hidden_states=prompt_embeds, |
|
class_labels=noise_level, |
|
cross_attention_kwargs=cross_attention_kwargs, |
|
return_dict=False, |
|
)[0] |
|
|
|
|
|
if do_classifier_free_guidance: |
|
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) |
|
noise_pred_uncond, _ = noise_pred_uncond.split(model_input.shape[1] // 2, dim=1) |
|
noise_pred_text, predicted_variance = noise_pred_text.split(model_input.shape[1] // 2, dim=1) |
|
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) |
|
noise_pred = torch.cat([noise_pred, predicted_variance], dim=1) |
|
|
|
if self.scheduler.config.variance_type not in ["learned", "learned_range"]: |
|
noise_pred, _ = noise_pred.split(intermediate_images.shape[1], dim=1) |
|
|
|
|
|
intermediate_images = self.scheduler.step( |
|
noise_pred, t, intermediate_images, **extra_step_kwargs, return_dict=False |
|
)[0] |
|
|
|
|
|
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): |
|
progress_bar.update() |
|
if callback is not None and i % callback_steps == 0: |
|
callback(i, t, intermediate_images) |
|
|
|
image = intermediate_images |
|
|
|
if output_type == "pil": |
|
|
|
image = (image / 2 + 0.5).clamp(0, 1) |
|
image = image.cpu().permute(0, 2, 3, 1).float().numpy() |
|
|
|
|
|
image, nsfw_detected, watermark_detected = self.run_safety_checker(image, device, prompt_embeds.dtype) |
|
|
|
|
|
image = self.numpy_to_pil(image) |
|
|
|
|
|
if self.watermarker is not None: |
|
self.watermarker.apply_watermark(image, self.unet.config.sample_size) |
|
elif output_type == "pt": |
|
nsfw_detected = None |
|
watermark_detected = None |
|
|
|
if hasattr(self, "unet_offload_hook") and self.unet_offload_hook is not None: |
|
self.unet_offload_hook.offload() |
|
else: |
|
|
|
image = (image / 2 + 0.5).clamp(0, 1) |
|
image = image.cpu().permute(0, 2, 3, 1).float().numpy() |
|
|
|
|
|
image, nsfw_detected, watermark_detected = self.run_safety_checker(image, device, prompt_embeds.dtype) |
|
|
|
|
|
self.maybe_free_model_hooks() |
|
|
|
if not return_dict: |
|
return (image, nsfw_detected, watermark_detected) |
|
|
|
return IFPipelineOutput(images=image, nsfw_detected=nsfw_detected, watermark_detected=watermark_detected) |
|
|