|
from typing import List |
|
|
|
import PIL.Image |
|
import torch |
|
from PIL import Image |
|
|
|
from ...configuration_utils import ConfigMixin |
|
from ...models.modeling_utils import ModelMixin |
|
from ...utils import PIL_INTERPOLATION |
|
|
|
|
|
class IFWatermarker(ModelMixin, ConfigMixin): |
|
def __init__(self): |
|
super().__init__() |
|
|
|
self.register_buffer("watermark_image", torch.zeros((62, 62, 4))) |
|
self.watermark_image_as_pil = None |
|
|
|
def apply_watermark(self, images: List[PIL.Image.Image], sample_size=None): |
|
|
|
|
|
h = images[0].height |
|
w = images[0].width |
|
|
|
sample_size = sample_size or h |
|
|
|
coef = min(h / sample_size, w / sample_size) |
|
img_h, img_w = (int(h / coef), int(w / coef)) if coef < 1 else (h, w) |
|
|
|
S1, S2 = 1024**2, img_w * img_h |
|
K = (S2 / S1) ** 0.5 |
|
wm_size, wm_x, wm_y = int(K * 62), img_w - int(14 * K), img_h - int(14 * K) |
|
|
|
if self.watermark_image_as_pil is None: |
|
watermark_image = self.watermark_image.to(torch.uint8).cpu().numpy() |
|
watermark_image = Image.fromarray(watermark_image, mode="RGBA") |
|
self.watermark_image_as_pil = watermark_image |
|
|
|
wm_img = self.watermark_image_as_pil.resize( |
|
(wm_size, wm_size), PIL_INTERPOLATION["bicubic"], reducing_gap=None |
|
) |
|
|
|
for pil_img in images: |
|
pil_img.paste(wm_img, box=(wm_x - wm_size, wm_y - wm_size, wm_x, wm_y), mask=wm_img.split()[-1]) |
|
|
|
return images |
|
|