|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import numpy as np |
|
|
|
from ....configuration_utils import ConfigMixin, register_to_config |
|
from ....schedulers.scheduling_utils import SchedulerMixin |
|
|
|
|
|
try: |
|
import librosa |
|
|
|
_librosa_can_be_imported = True |
|
_import_error = "" |
|
except Exception as e: |
|
_librosa_can_be_imported = False |
|
_import_error = ( |
|
f"Cannot import librosa because {e}. Make sure to correctly install librosa to be able to install it." |
|
) |
|
|
|
|
|
from PIL import Image |
|
|
|
|
|
class Mel(ConfigMixin, SchedulerMixin): |
|
""" |
|
Parameters: |
|
x_res (`int`): |
|
x resolution of spectrogram (time). |
|
y_res (`int`): |
|
y resolution of spectrogram (frequency bins). |
|
sample_rate (`int`): |
|
Sample rate of audio. |
|
n_fft (`int`): |
|
Number of Fast Fourier Transforms. |
|
hop_length (`int`): |
|
Hop length (a higher number is recommended if `y_res` < 256). |
|
top_db (`int`): |
|
Loudest decibel value. |
|
n_iter (`int`): |
|
Number of iterations for Griffin-Lim Mel inversion. |
|
""" |
|
|
|
config_name = "mel_config.json" |
|
|
|
@register_to_config |
|
def __init__( |
|
self, |
|
x_res: int = 256, |
|
y_res: int = 256, |
|
sample_rate: int = 22050, |
|
n_fft: int = 2048, |
|
hop_length: int = 512, |
|
top_db: int = 80, |
|
n_iter: int = 32, |
|
): |
|
self.hop_length = hop_length |
|
self.sr = sample_rate |
|
self.n_fft = n_fft |
|
self.top_db = top_db |
|
self.n_iter = n_iter |
|
self.set_resolution(x_res, y_res) |
|
self.audio = None |
|
|
|
if not _librosa_can_be_imported: |
|
raise ValueError(_import_error) |
|
|
|
def set_resolution(self, x_res: int, y_res: int): |
|
"""Set resolution. |
|
|
|
Args: |
|
x_res (`int`): |
|
x resolution of spectrogram (time). |
|
y_res (`int`): |
|
y resolution of spectrogram (frequency bins). |
|
""" |
|
self.x_res = x_res |
|
self.y_res = y_res |
|
self.n_mels = self.y_res |
|
self.slice_size = self.x_res * self.hop_length - 1 |
|
|
|
def load_audio(self, audio_file: str = None, raw_audio: np.ndarray = None): |
|
"""Load audio. |
|
|
|
Args: |
|
audio_file (`str`): |
|
An audio file that must be on disk due to [Librosa](https://librosa.org/) limitation. |
|
raw_audio (`np.ndarray`): |
|
The raw audio file as a NumPy array. |
|
""" |
|
if audio_file is not None: |
|
self.audio, _ = librosa.load(audio_file, mono=True, sr=self.sr) |
|
else: |
|
self.audio = raw_audio |
|
|
|
|
|
if len(self.audio) < self.x_res * self.hop_length: |
|
self.audio = np.concatenate([self.audio, np.zeros((self.x_res * self.hop_length - len(self.audio),))]) |
|
|
|
def get_number_of_slices(self) -> int: |
|
"""Get number of slices in audio. |
|
|
|
Returns: |
|
`int`: |
|
Number of spectograms audio can be sliced into. |
|
""" |
|
return len(self.audio) // self.slice_size |
|
|
|
def get_audio_slice(self, slice: int = 0) -> np.ndarray: |
|
"""Get slice of audio. |
|
|
|
Args: |
|
slice (`int`): |
|
Slice number of audio (out of `get_number_of_slices()`). |
|
|
|
Returns: |
|
`np.ndarray`: |
|
The audio slice as a NumPy array. |
|
""" |
|
return self.audio[self.slice_size * slice : self.slice_size * (slice + 1)] |
|
|
|
def get_sample_rate(self) -> int: |
|
"""Get sample rate. |
|
|
|
Returns: |
|
`int`: |
|
Sample rate of audio. |
|
""" |
|
return self.sr |
|
|
|
def audio_slice_to_image(self, slice: int) -> Image.Image: |
|
"""Convert slice of audio to spectrogram. |
|
|
|
Args: |
|
slice (`int`): |
|
Slice number of audio to convert (out of `get_number_of_slices()`). |
|
|
|
Returns: |
|
`PIL Image`: |
|
A grayscale image of `x_res x y_res`. |
|
""" |
|
S = librosa.feature.melspectrogram( |
|
y=self.get_audio_slice(slice), sr=self.sr, n_fft=self.n_fft, hop_length=self.hop_length, n_mels=self.n_mels |
|
) |
|
log_S = librosa.power_to_db(S, ref=np.max, top_db=self.top_db) |
|
bytedata = (((log_S + self.top_db) * 255 / self.top_db).clip(0, 255) + 0.5).astype(np.uint8) |
|
image = Image.fromarray(bytedata) |
|
return image |
|
|
|
def image_to_audio(self, image: Image.Image) -> np.ndarray: |
|
"""Converts spectrogram to audio. |
|
|
|
Args: |
|
image (`PIL Image`): |
|
An grayscale image of `x_res x y_res`. |
|
|
|
Returns: |
|
audio (`np.ndarray`): |
|
The audio as a NumPy array. |
|
""" |
|
bytedata = np.frombuffer(image.tobytes(), dtype="uint8").reshape((image.height, image.width)) |
|
log_S = bytedata.astype("float") * self.top_db / 255 - self.top_db |
|
S = librosa.db_to_power(log_S) |
|
audio = librosa.feature.inverse.mel_to_audio( |
|
S, sr=self.sr, n_fft=self.n_fft, hop_length=self.hop_length, n_iter=self.n_iter |
|
) |
|
return audio |
|
|