|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import inspect |
|
from typing import List, Optional, Tuple, Union |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.utils.checkpoint |
|
from transformers import PretrainedConfig, PreTrainedModel, PreTrainedTokenizer |
|
from transformers.activations import ACT2FN |
|
from transformers.modeling_outputs import BaseModelOutput |
|
from transformers.utils import logging |
|
|
|
from ...models import AutoencoderKL, UNet2DConditionModel, UNet2DModel, VQModel |
|
from ...schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler |
|
from ...utils.torch_utils import randn_tensor |
|
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput |
|
|
|
|
|
class LDMTextToImagePipeline(DiffusionPipeline): |
|
r""" |
|
Pipeline for text-to-image generation using latent diffusion. |
|
|
|
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods |
|
implemented for all pipelines (downloading, saving, running on a particular device, etc.). |
|
|
|
Parameters: |
|
vqvae ([`VQModel`]): |
|
Vector-quantized (VQ) model to encode and decode images to and from latent representations. |
|
bert ([`LDMBertModel`]): |
|
Text-encoder model based on [`~transformers.BERT`]. |
|
tokenizer ([`~transformers.BertTokenizer`]): |
|
A `BertTokenizer` to tokenize text. |
|
unet ([`UNet2DConditionModel`]): |
|
A `UNet2DConditionModel` to denoise the encoded image latents. |
|
scheduler ([`SchedulerMixin`]): |
|
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of |
|
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. |
|
""" |
|
|
|
model_cpu_offload_seq = "bert->unet->vqvae" |
|
|
|
def __init__( |
|
self, |
|
vqvae: Union[VQModel, AutoencoderKL], |
|
bert: PreTrainedModel, |
|
tokenizer: PreTrainedTokenizer, |
|
unet: Union[UNet2DModel, UNet2DConditionModel], |
|
scheduler: Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler], |
|
): |
|
super().__init__() |
|
self.register_modules(vqvae=vqvae, bert=bert, tokenizer=tokenizer, unet=unet, scheduler=scheduler) |
|
self.vae_scale_factor = 2 ** (len(self.vqvae.config.block_out_channels) - 1) |
|
|
|
@torch.no_grad() |
|
def __call__( |
|
self, |
|
prompt: Union[str, List[str]], |
|
height: Optional[int] = None, |
|
width: Optional[int] = None, |
|
num_inference_steps: Optional[int] = 50, |
|
guidance_scale: Optional[float] = 1.0, |
|
eta: Optional[float] = 0.0, |
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, |
|
latents: Optional[torch.FloatTensor] = None, |
|
output_type: Optional[str] = "pil", |
|
return_dict: bool = True, |
|
**kwargs, |
|
) -> Union[Tuple, ImagePipelineOutput]: |
|
r""" |
|
The call function to the pipeline for generation. |
|
|
|
Args: |
|
prompt (`str` or `List[str]`): |
|
The prompt or prompts to guide the image generation. |
|
height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): |
|
The height in pixels of the generated image. |
|
width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): |
|
The width in pixels of the generated image. |
|
num_inference_steps (`int`, *optional*, defaults to 50): |
|
The number of denoising steps. More denoising steps usually lead to a higher quality image at the |
|
expense of slower inference. |
|
guidance_scale (`float`, *optional*, defaults to 1.0): |
|
A higher guidance scale value encourages the model to generate images closely linked to the text |
|
`prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`. |
|
generator (`torch.Generator`, *optional*): |
|
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make |
|
generation deterministic. |
|
latents (`torch.FloatTensor`, *optional*): |
|
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image |
|
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents |
|
tensor is generated by sampling using the supplied random `generator`. |
|
output_type (`str`, *optional*, defaults to `"pil"`): |
|
The output format of the generated image. Choose between `PIL.Image` or `np.array`. |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`ImagePipelineOutput`] instead of a plain tuple. |
|
|
|
Example: |
|
|
|
```py |
|
>>> from diffusers import DiffusionPipeline |
|
|
|
>>> # load model and scheduler |
|
>>> ldm = DiffusionPipeline.from_pretrained("CompVis/ldm-text2im-large-256") |
|
|
|
>>> # run pipeline in inference (sample random noise and denoise) |
|
>>> prompt = "A painting of a squirrel eating a burger" |
|
>>> images = ldm([prompt], num_inference_steps=50, eta=0.3, guidance_scale=6).images |
|
|
|
>>> # save images |
|
>>> for idx, image in enumerate(images): |
|
... image.save(f"squirrel-{idx}.png") |
|
``` |
|
|
|
Returns: |
|
[`~pipelines.ImagePipelineOutput`] or `tuple`: |
|
If `return_dict` is `True`, [`~pipelines.ImagePipelineOutput`] is returned, otherwise a `tuple` is |
|
returned where the first element is a list with the generated images. |
|
""" |
|
|
|
height = height or self.unet.config.sample_size * self.vae_scale_factor |
|
width = width or self.unet.config.sample_size * self.vae_scale_factor |
|
|
|
if isinstance(prompt, str): |
|
batch_size = 1 |
|
elif isinstance(prompt, list): |
|
batch_size = len(prompt) |
|
else: |
|
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") |
|
|
|
if height % 8 != 0 or width % 8 != 0: |
|
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") |
|
|
|
|
|
if guidance_scale != 1.0: |
|
uncond_input = self.tokenizer( |
|
[""] * batch_size, padding="max_length", max_length=77, truncation=True, return_tensors="pt" |
|
) |
|
negative_prompt_embeds = self.bert(uncond_input.input_ids.to(self._execution_device))[0] |
|
|
|
|
|
text_input = self.tokenizer(prompt, padding="max_length", max_length=77, truncation=True, return_tensors="pt") |
|
prompt_embeds = self.bert(text_input.input_ids.to(self._execution_device))[0] |
|
|
|
|
|
latents_shape = (batch_size, self.unet.config.in_channels, height // 8, width // 8) |
|
if isinstance(generator, list) and len(generator) != batch_size: |
|
raise ValueError( |
|
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" |
|
f" size of {batch_size}. Make sure the batch size matches the length of the generators." |
|
) |
|
|
|
if latents is None: |
|
latents = randn_tensor( |
|
latents_shape, generator=generator, device=self._execution_device, dtype=prompt_embeds.dtype |
|
) |
|
else: |
|
if latents.shape != latents_shape: |
|
raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}") |
|
latents = latents.to(self._execution_device) |
|
|
|
self.scheduler.set_timesteps(num_inference_steps) |
|
|
|
|
|
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) |
|
|
|
extra_kwargs = {} |
|
if accepts_eta: |
|
extra_kwargs["eta"] = eta |
|
|
|
for t in self.progress_bar(self.scheduler.timesteps): |
|
if guidance_scale == 1.0: |
|
|
|
latents_input = latents |
|
context = prompt_embeds |
|
else: |
|
|
|
|
|
|
|
latents_input = torch.cat([latents] * 2) |
|
context = torch.cat([negative_prompt_embeds, prompt_embeds]) |
|
|
|
|
|
noise_pred = self.unet(latents_input, t, encoder_hidden_states=context).sample |
|
|
|
if guidance_scale != 1.0: |
|
noise_pred_uncond, noise_prediction_text = noise_pred.chunk(2) |
|
noise_pred = noise_pred_uncond + guidance_scale * (noise_prediction_text - noise_pred_uncond) |
|
|
|
|
|
latents = self.scheduler.step(noise_pred, t, latents, **extra_kwargs).prev_sample |
|
|
|
|
|
latents = 1 / self.vqvae.config.scaling_factor * latents |
|
image = self.vqvae.decode(latents).sample |
|
|
|
image = (image / 2 + 0.5).clamp(0, 1) |
|
image = image.cpu().permute(0, 2, 3, 1).numpy() |
|
if output_type == "pil": |
|
image = self.numpy_to_pil(image) |
|
|
|
if not return_dict: |
|
return (image,) |
|
|
|
return ImagePipelineOutput(images=image) |
|
|
|
|
|
|
|
|
|
|
|
""" PyTorch LDMBERT model.""" |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
LDMBERT_PRETRAINED_MODEL_ARCHIVE_LIST = [ |
|
"ldm-bert", |
|
|
|
] |
|
|
|
|
|
LDMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP = { |
|
"ldm-bert": "https://huggingface.co/valhalla/ldm-bert/blob/main/config.json", |
|
} |
|
|
|
|
|
""" LDMBERT model configuration""" |
|
|
|
|
|
class LDMBertConfig(PretrainedConfig): |
|
model_type = "ldmbert" |
|
keys_to_ignore_at_inference = ["past_key_values"] |
|
attribute_map = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} |
|
|
|
def __init__( |
|
self, |
|
vocab_size=30522, |
|
max_position_embeddings=77, |
|
encoder_layers=32, |
|
encoder_ffn_dim=5120, |
|
encoder_attention_heads=8, |
|
head_dim=64, |
|
encoder_layerdrop=0.0, |
|
activation_function="gelu", |
|
d_model=1280, |
|
dropout=0.1, |
|
attention_dropout=0.0, |
|
activation_dropout=0.0, |
|
init_std=0.02, |
|
classifier_dropout=0.0, |
|
scale_embedding=False, |
|
use_cache=True, |
|
pad_token_id=0, |
|
**kwargs, |
|
): |
|
self.vocab_size = vocab_size |
|
self.max_position_embeddings = max_position_embeddings |
|
self.d_model = d_model |
|
self.encoder_ffn_dim = encoder_ffn_dim |
|
self.encoder_layers = encoder_layers |
|
self.encoder_attention_heads = encoder_attention_heads |
|
self.head_dim = head_dim |
|
self.dropout = dropout |
|
self.attention_dropout = attention_dropout |
|
self.activation_dropout = activation_dropout |
|
self.activation_function = activation_function |
|
self.init_std = init_std |
|
self.encoder_layerdrop = encoder_layerdrop |
|
self.classifier_dropout = classifier_dropout |
|
self.use_cache = use_cache |
|
self.num_hidden_layers = encoder_layers |
|
self.scale_embedding = scale_embedding |
|
|
|
super().__init__(pad_token_id=pad_token_id, **kwargs) |
|
|
|
|
|
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None): |
|
""" |
|
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`. |
|
""" |
|
bsz, src_len = mask.size() |
|
tgt_len = tgt_len if tgt_len is not None else src_len |
|
|
|
expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype) |
|
|
|
inverted_mask = 1.0 - expanded_mask |
|
|
|
return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min) |
|
|
|
|
|
|
|
class LDMBertAttention(nn.Module): |
|
"""Multi-headed attention from 'Attention Is All You Need' paper""" |
|
|
|
def __init__( |
|
self, |
|
embed_dim: int, |
|
num_heads: int, |
|
head_dim: int, |
|
dropout: float = 0.0, |
|
is_decoder: bool = False, |
|
bias: bool = False, |
|
): |
|
super().__init__() |
|
self.embed_dim = embed_dim |
|
self.num_heads = num_heads |
|
self.dropout = dropout |
|
self.head_dim = head_dim |
|
self.inner_dim = head_dim * num_heads |
|
|
|
self.scaling = self.head_dim**-0.5 |
|
self.is_decoder = is_decoder |
|
|
|
self.k_proj = nn.Linear(embed_dim, self.inner_dim, bias=bias) |
|
self.v_proj = nn.Linear(embed_dim, self.inner_dim, bias=bias) |
|
self.q_proj = nn.Linear(embed_dim, self.inner_dim, bias=bias) |
|
self.out_proj = nn.Linear(self.inner_dim, embed_dim) |
|
|
|
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): |
|
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
key_value_states: Optional[torch.Tensor] = None, |
|
past_key_value: Optional[Tuple[torch.Tensor]] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
layer_head_mask: Optional[torch.Tensor] = None, |
|
output_attentions: bool = False, |
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: |
|
"""Input shape: Batch x Time x Channel""" |
|
|
|
|
|
|
|
is_cross_attention = key_value_states is not None |
|
|
|
bsz, tgt_len, _ = hidden_states.size() |
|
|
|
|
|
query_states = self.q_proj(hidden_states) * self.scaling |
|
|
|
if is_cross_attention and past_key_value is not None: |
|
|
|
key_states = past_key_value[0] |
|
value_states = past_key_value[1] |
|
elif is_cross_attention: |
|
|
|
key_states = self._shape(self.k_proj(key_value_states), -1, bsz) |
|
value_states = self._shape(self.v_proj(key_value_states), -1, bsz) |
|
elif past_key_value is not None: |
|
|
|
key_states = self._shape(self.k_proj(hidden_states), -1, bsz) |
|
value_states = self._shape(self.v_proj(hidden_states), -1, bsz) |
|
key_states = torch.cat([past_key_value[0], key_states], dim=2) |
|
value_states = torch.cat([past_key_value[1], value_states], dim=2) |
|
else: |
|
|
|
key_states = self._shape(self.k_proj(hidden_states), -1, bsz) |
|
value_states = self._shape(self.v_proj(hidden_states), -1, bsz) |
|
|
|
if self.is_decoder: |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
past_key_value = (key_states, value_states) |
|
|
|
proj_shape = (bsz * self.num_heads, -1, self.head_dim) |
|
query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape) |
|
key_states = key_states.view(*proj_shape) |
|
value_states = value_states.view(*proj_shape) |
|
|
|
src_len = key_states.size(1) |
|
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2)) |
|
|
|
if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len): |
|
raise ValueError( |
|
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is" |
|
f" {attn_weights.size()}" |
|
) |
|
|
|
if attention_mask is not None: |
|
if attention_mask.size() != (bsz, 1, tgt_len, src_len): |
|
raise ValueError( |
|
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}" |
|
) |
|
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask |
|
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) |
|
|
|
attn_weights = nn.functional.softmax(attn_weights, dim=-1) |
|
|
|
if layer_head_mask is not None: |
|
if layer_head_mask.size() != (self.num_heads,): |
|
raise ValueError( |
|
f"Head mask for a single layer should be of size {(self.num_heads,)}, but is" |
|
f" {layer_head_mask.size()}" |
|
) |
|
attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len) |
|
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) |
|
|
|
if output_attentions: |
|
|
|
|
|
|
|
|
|
attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) |
|
attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len) |
|
else: |
|
attn_weights_reshaped = None |
|
|
|
attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) |
|
|
|
attn_output = torch.bmm(attn_probs, value_states) |
|
|
|
if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim): |
|
raise ValueError( |
|
f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is" |
|
f" {attn_output.size()}" |
|
) |
|
|
|
attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim) |
|
attn_output = attn_output.transpose(1, 2) |
|
|
|
|
|
|
|
attn_output = attn_output.reshape(bsz, tgt_len, self.inner_dim) |
|
|
|
attn_output = self.out_proj(attn_output) |
|
|
|
return attn_output, attn_weights_reshaped, past_key_value |
|
|
|
|
|
class LDMBertEncoderLayer(nn.Module): |
|
def __init__(self, config: LDMBertConfig): |
|
super().__init__() |
|
self.embed_dim = config.d_model |
|
self.self_attn = LDMBertAttention( |
|
embed_dim=self.embed_dim, |
|
num_heads=config.encoder_attention_heads, |
|
head_dim=config.head_dim, |
|
dropout=config.attention_dropout, |
|
) |
|
self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim) |
|
self.dropout = config.dropout |
|
self.activation_fn = ACT2FN[config.activation_function] |
|
self.activation_dropout = config.activation_dropout |
|
self.fc1 = nn.Linear(self.embed_dim, config.encoder_ffn_dim) |
|
self.fc2 = nn.Linear(config.encoder_ffn_dim, self.embed_dim) |
|
self.final_layer_norm = nn.LayerNorm(self.embed_dim) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.FloatTensor, |
|
attention_mask: torch.FloatTensor, |
|
layer_head_mask: torch.FloatTensor, |
|
output_attentions: Optional[bool] = False, |
|
) -> Tuple[torch.FloatTensor, Optional[torch.FloatTensor]]: |
|
""" |
|
Args: |
|
hidden_states (`torch.FloatTensor`): input to the layer of shape `(seq_len, batch, embed_dim)` |
|
attention_mask (`torch.FloatTensor`): attention mask of size |
|
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. |
|
layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size |
|
`(encoder_attention_heads,)`. |
|
output_attentions (`bool`, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under |
|
returned tensors for more detail. |
|
""" |
|
residual = hidden_states |
|
hidden_states = self.self_attn_layer_norm(hidden_states) |
|
hidden_states, attn_weights, _ = self.self_attn( |
|
hidden_states=hidden_states, |
|
attention_mask=attention_mask, |
|
layer_head_mask=layer_head_mask, |
|
output_attentions=output_attentions, |
|
) |
|
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) |
|
hidden_states = residual + hidden_states |
|
|
|
residual = hidden_states |
|
hidden_states = self.final_layer_norm(hidden_states) |
|
hidden_states = self.activation_fn(self.fc1(hidden_states)) |
|
hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training) |
|
hidden_states = self.fc2(hidden_states) |
|
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) |
|
hidden_states = residual + hidden_states |
|
|
|
if hidden_states.dtype == torch.float16 and ( |
|
torch.isinf(hidden_states).any() or torch.isnan(hidden_states).any() |
|
): |
|
clamp_value = torch.finfo(hidden_states.dtype).max - 1000 |
|
hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value) |
|
|
|
outputs = (hidden_states,) |
|
|
|
if output_attentions: |
|
outputs += (attn_weights,) |
|
|
|
return outputs |
|
|
|
|
|
|
|
class LDMBertPreTrainedModel(PreTrainedModel): |
|
config_class = LDMBertConfig |
|
base_model_prefix = "model" |
|
_supports_gradient_checkpointing = True |
|
_keys_to_ignore_on_load_unexpected = [r"encoder\.version", r"decoder\.version"] |
|
|
|
def _init_weights(self, module): |
|
std = self.config.init_std |
|
if isinstance(module, nn.Linear): |
|
module.weight.data.normal_(mean=0.0, std=std) |
|
if module.bias is not None: |
|
module.bias.data.zero_() |
|
elif isinstance(module, nn.Embedding): |
|
module.weight.data.normal_(mean=0.0, std=std) |
|
if module.padding_idx is not None: |
|
module.weight.data[module.padding_idx].zero_() |
|
|
|
def _set_gradient_checkpointing(self, module, value=False): |
|
if isinstance(module, (LDMBertEncoder,)): |
|
module.gradient_checkpointing = value |
|
|
|
@property |
|
def dummy_inputs(self): |
|
pad_token = self.config.pad_token_id |
|
input_ids = torch.tensor([[0, 6, 10, 4, 2], [0, 8, 12, 2, pad_token]], device=self.device) |
|
dummy_inputs = { |
|
"attention_mask": input_ids.ne(pad_token), |
|
"input_ids": input_ids, |
|
} |
|
return dummy_inputs |
|
|
|
|
|
class LDMBertEncoder(LDMBertPreTrainedModel): |
|
""" |
|
Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a |
|
[`LDMBertEncoderLayer`]. |
|
|
|
Args: |
|
config: LDMBertConfig |
|
embed_tokens (nn.Embedding): output embedding |
|
""" |
|
|
|
def __init__(self, config: LDMBertConfig): |
|
super().__init__(config) |
|
|
|
self.dropout = config.dropout |
|
|
|
embed_dim = config.d_model |
|
self.padding_idx = config.pad_token_id |
|
self.max_source_positions = config.max_position_embeddings |
|
|
|
self.embed_tokens = nn.Embedding(config.vocab_size, embed_dim) |
|
self.embed_positions = nn.Embedding(config.max_position_embeddings, embed_dim) |
|
self.layers = nn.ModuleList([LDMBertEncoderLayer(config) for _ in range(config.encoder_layers)]) |
|
self.layer_norm = nn.LayerNorm(embed_dim) |
|
|
|
self.gradient_checkpointing = False |
|
|
|
self.post_init() |
|
|
|
def get_input_embeddings(self): |
|
return self.embed_tokens |
|
|
|
def set_input_embeddings(self, value): |
|
self.embed_tokens = value |
|
|
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
head_mask: Optional[torch.Tensor] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, BaseModelOutput]: |
|
r""" |
|
Args: |
|
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): |
|
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you |
|
provide it. |
|
|
|
Indices can be obtained using [`BartTokenizer`]. See [`PreTrainedTokenizer.encode`] and |
|
[`PreTrainedTokenizer.__call__`] for details. |
|
|
|
[What are input IDs?](../glossary#input-ids) |
|
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: |
|
|
|
- 1 for tokens that are **not masked**, |
|
- 0 for tokens that are **masked**. |
|
|
|
[What are attention masks?](../glossary#attention-mask) |
|
head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*): |
|
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: |
|
|
|
- 1 indicates the head is **not masked**, |
|
- 0 indicates the head is **masked**. |
|
|
|
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): |
|
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. |
|
This is useful if you want more control over how to convert `input_ids` indices into associated vectors |
|
than the model's internal embedding lookup matrix. |
|
output_attentions (`bool`, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under |
|
returned tensors for more detail. |
|
output_hidden_states (`bool`, *optional*): |
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors |
|
for more detail. |
|
return_dict (`bool`, *optional*): |
|
Whether or not to return a [`~utils.BaseModelOutput`] instead of a plain tuple. |
|
""" |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
|
|
if input_ids is not None and inputs_embeds is not None: |
|
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") |
|
elif input_ids is not None: |
|
input_shape = input_ids.size() |
|
input_ids = input_ids.view(-1, input_shape[-1]) |
|
elif inputs_embeds is not None: |
|
input_shape = inputs_embeds.size()[:-1] |
|
else: |
|
raise ValueError("You have to specify either input_ids or inputs_embeds") |
|
|
|
if inputs_embeds is None: |
|
inputs_embeds = self.embed_tokens(input_ids) |
|
|
|
seq_len = input_shape[1] |
|
if position_ids is None: |
|
position_ids = torch.arange(seq_len, dtype=torch.long, device=inputs_embeds.device).expand((1, -1)) |
|
embed_pos = self.embed_positions(position_ids) |
|
|
|
hidden_states = inputs_embeds + embed_pos |
|
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) |
|
|
|
|
|
if attention_mask is not None: |
|
|
|
attention_mask = _expand_mask(attention_mask, inputs_embeds.dtype) |
|
|
|
encoder_states = () if output_hidden_states else None |
|
all_attentions = () if output_attentions else None |
|
|
|
|
|
if head_mask is not None: |
|
if head_mask.size()[0] != (len(self.layers)): |
|
raise ValueError( |
|
f"The head_mask should be specified for {len(self.layers)} layers, but it is for" |
|
f" {head_mask.size()[0]}." |
|
) |
|
|
|
for idx, encoder_layer in enumerate(self.layers): |
|
if output_hidden_states: |
|
encoder_states = encoder_states + (hidden_states,) |
|
if self.gradient_checkpointing and self.training: |
|
|
|
def create_custom_forward(module): |
|
def custom_forward(*inputs): |
|
return module(*inputs, output_attentions) |
|
|
|
return custom_forward |
|
|
|
layer_outputs = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(encoder_layer), |
|
hidden_states, |
|
attention_mask, |
|
(head_mask[idx] if head_mask is not None else None), |
|
) |
|
else: |
|
layer_outputs = encoder_layer( |
|
hidden_states, |
|
attention_mask, |
|
layer_head_mask=(head_mask[idx] if head_mask is not None else None), |
|
output_attentions=output_attentions, |
|
) |
|
|
|
hidden_states = layer_outputs[0] |
|
|
|
if output_attentions: |
|
all_attentions = all_attentions + (layer_outputs[1],) |
|
|
|
hidden_states = self.layer_norm(hidden_states) |
|
|
|
if output_hidden_states: |
|
encoder_states = encoder_states + (hidden_states,) |
|
|
|
if not return_dict: |
|
return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None) |
|
return BaseModelOutput( |
|
last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions |
|
) |
|
|
|
|
|
class LDMBertModel(LDMBertPreTrainedModel): |
|
_no_split_modules = [] |
|
|
|
def __init__(self, config: LDMBertConfig): |
|
super().__init__(config) |
|
self.model = LDMBertEncoder(config) |
|
self.to_logits = nn.Linear(config.hidden_size, config.vocab_size) |
|
|
|
def forward( |
|
self, |
|
input_ids=None, |
|
attention_mask=None, |
|
position_ids=None, |
|
head_mask=None, |
|
inputs_embeds=None, |
|
output_attentions=None, |
|
output_hidden_states=None, |
|
return_dict=None, |
|
): |
|
outputs = self.model( |
|
input_ids, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
head_mask=head_mask, |
|
inputs_embeds=inputs_embeds, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
return outputs |
|
|