|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import math |
|
from typing import List, Optional, Tuple, Union |
|
|
|
import numpy as np |
|
import torch |
|
|
|
from ..configuration_utils import ConfigMixin, register_to_config |
|
from ..utils import deprecate |
|
from ..utils.torch_utils import randn_tensor |
|
from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput |
|
|
|
|
|
|
|
def betas_for_alpha_bar( |
|
num_diffusion_timesteps, |
|
max_beta=0.999, |
|
alpha_transform_type="cosine", |
|
): |
|
""" |
|
Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of |
|
(1-beta) over time from t = [0,1]. |
|
|
|
Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up |
|
to that part of the diffusion process. |
|
|
|
|
|
Args: |
|
num_diffusion_timesteps (`int`): the number of betas to produce. |
|
max_beta (`float`): the maximum beta to use; use values lower than 1 to |
|
prevent singularities. |
|
alpha_transform_type (`str`, *optional*, default to `cosine`): the type of noise schedule for alpha_bar. |
|
Choose from `cosine` or `exp` |
|
|
|
Returns: |
|
betas (`np.ndarray`): the betas used by the scheduler to step the model outputs |
|
""" |
|
if alpha_transform_type == "cosine": |
|
|
|
def alpha_bar_fn(t): |
|
return math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2 |
|
|
|
elif alpha_transform_type == "exp": |
|
|
|
def alpha_bar_fn(t): |
|
return math.exp(t * -12.0) |
|
|
|
else: |
|
raise ValueError(f"Unsupported alpha_tranform_type: {alpha_transform_type}") |
|
|
|
betas = [] |
|
for i in range(num_diffusion_timesteps): |
|
t1 = i / num_diffusion_timesteps |
|
t2 = (i + 1) / num_diffusion_timesteps |
|
betas.append(min(1 - alpha_bar_fn(t2) / alpha_bar_fn(t1), max_beta)) |
|
return torch.tensor(betas, dtype=torch.float32) |
|
|
|
|
|
class DPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin): |
|
""" |
|
`DPMSolverMultistepScheduler` is a fast dedicated high-order solver for diffusion ODEs. |
|
|
|
This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic |
|
methods the library implements for all schedulers such as loading and saving. |
|
|
|
Args: |
|
num_train_timesteps (`int`, defaults to 1000): |
|
The number of diffusion steps to train the model. |
|
beta_start (`float`, defaults to 0.0001): |
|
The starting `beta` value of inference. |
|
beta_end (`float`, defaults to 0.02): |
|
The final `beta` value. |
|
beta_schedule (`str`, defaults to `"linear"`): |
|
The beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from |
|
`linear`, `scaled_linear`, or `squaredcos_cap_v2`. |
|
trained_betas (`np.ndarray`, *optional*): |
|
Pass an array of betas directly to the constructor to bypass `beta_start` and `beta_end`. |
|
solver_order (`int`, defaults to 2): |
|
The DPMSolver order which can be `1` or `2` or `3`. It is recommended to use `solver_order=2` for guided |
|
sampling, and `solver_order=3` for unconditional sampling. |
|
prediction_type (`str`, defaults to `epsilon`, *optional*): |
|
Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process), |
|
`sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen |
|
Video](https://imagen.research.google/video/paper.pdf) paper). |
|
thresholding (`bool`, defaults to `False`): |
|
Whether to use the "dynamic thresholding" method. This is unsuitable for latent-space diffusion models such |
|
as Stable Diffusion. |
|
dynamic_thresholding_ratio (`float`, defaults to 0.995): |
|
The ratio for the dynamic thresholding method. Valid only when `thresholding=True`. |
|
sample_max_value (`float`, defaults to 1.0): |
|
The threshold value for dynamic thresholding. Valid only when `thresholding=True` and |
|
`algorithm_type="dpmsolver++"`. |
|
algorithm_type (`str`, defaults to `dpmsolver++`): |
|
Algorithm type for the solver; can be `dpmsolver`, `dpmsolver++`, `sde-dpmsolver` or `sde-dpmsolver++`. The |
|
`dpmsolver` type implements the algorithms in the [DPMSolver](https://huggingface.co/papers/2206.00927) |
|
paper, and the `dpmsolver++` type implements the algorithms in the |
|
[DPMSolver++](https://huggingface.co/papers/2211.01095) paper. It is recommended to use `dpmsolver++` or |
|
`sde-dpmsolver++` with `solver_order=2` for guided sampling like in Stable Diffusion. |
|
solver_type (`str`, defaults to `midpoint`): |
|
Solver type for the second-order solver; can be `midpoint` or `heun`. The solver type slightly affects the |
|
sample quality, especially for a small number of steps. It is recommended to use `midpoint` solvers. |
|
lower_order_final (`bool`, defaults to `True`): |
|
Whether to use lower-order solvers in the final steps. Only valid for < 15 inference steps. This can |
|
stabilize the sampling of DPMSolver for steps < 15, especially for steps <= 10. |
|
euler_at_final (`bool`, defaults to `False`): |
|
Whether to use Euler's method in the final step. It is a trade-off between numerical stability and detail |
|
richness. This can stabilize the sampling of the SDE variant of DPMSolver for small number of inference |
|
steps, but sometimes may result in blurring. |
|
use_karras_sigmas (`bool`, *optional*, defaults to `False`): |
|
Whether to use Karras sigmas for step sizes in the noise schedule during the sampling process. If `True`, |
|
the sigmas are determined according to a sequence of noise levels {σi}. |
|
use_lu_lambdas (`bool`, *optional*, defaults to `False`): |
|
Whether to use the uniform-logSNR for step sizes proposed by Lu's DPM-Solver in the noise schedule during |
|
the sampling process. If `True`, the sigmas and time steps are determined according to a sequence of |
|
`lambda(t)`. |
|
lambda_min_clipped (`float`, defaults to `-inf`): |
|
Clipping threshold for the minimum value of `lambda(t)` for numerical stability. This is critical for the |
|
cosine (`squaredcos_cap_v2`) noise schedule. |
|
variance_type (`str`, *optional*): |
|
Set to "learned" or "learned_range" for diffusion models that predict variance. If set, the model's output |
|
contains the predicted Gaussian variance. |
|
timestep_spacing (`str`, defaults to `"linspace"`): |
|
The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and |
|
Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information. |
|
steps_offset (`int`, defaults to 0): |
|
An offset added to the inference steps. You can use a combination of `offset=1` and |
|
`set_alpha_to_one=False` to make the last step use step 0 for the previous alpha product like in Stable |
|
Diffusion. |
|
""" |
|
|
|
_compatibles = [e.name for e in KarrasDiffusionSchedulers] |
|
order = 1 |
|
|
|
@register_to_config |
|
def __init__( |
|
self, |
|
num_train_timesteps: int = 1000, |
|
beta_start: float = 0.0001, |
|
beta_end: float = 0.02, |
|
beta_schedule: str = "linear", |
|
trained_betas: Optional[Union[np.ndarray, List[float]]] = None, |
|
solver_order: int = 2, |
|
prediction_type: str = "epsilon", |
|
thresholding: bool = False, |
|
dynamic_thresholding_ratio: float = 0.995, |
|
sample_max_value: float = 1.0, |
|
algorithm_type: str = "dpmsolver++", |
|
solver_type: str = "midpoint", |
|
lower_order_final: bool = True, |
|
euler_at_final: bool = False, |
|
use_karras_sigmas: Optional[bool] = False, |
|
use_lu_lambdas: Optional[bool] = False, |
|
lambda_min_clipped: float = -float("inf"), |
|
variance_type: Optional[str] = None, |
|
timestep_spacing: str = "linspace", |
|
steps_offset: int = 0, |
|
): |
|
if trained_betas is not None: |
|
self.betas = torch.tensor(trained_betas, dtype=torch.float32) |
|
elif beta_schedule == "linear": |
|
self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32) |
|
elif beta_schedule == "scaled_linear": |
|
|
|
self.betas = torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2 |
|
elif beta_schedule == "squaredcos_cap_v2": |
|
|
|
self.betas = betas_for_alpha_bar(num_train_timesteps) |
|
else: |
|
raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}") |
|
|
|
self.alphas = 1.0 - self.betas |
|
self.alphas_cumprod = torch.cumprod(self.alphas, dim=0) |
|
|
|
self.alpha_t = torch.sqrt(self.alphas_cumprod) |
|
self.sigma_t = torch.sqrt(1 - self.alphas_cumprod) |
|
self.lambda_t = torch.log(self.alpha_t) - torch.log(self.sigma_t) |
|
self.sigmas = ((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 |
|
|
|
|
|
self.init_noise_sigma = 1.0 |
|
|
|
|
|
if algorithm_type not in ["dpmsolver", "dpmsolver++", "sde-dpmsolver", "sde-dpmsolver++"]: |
|
if algorithm_type == "deis": |
|
self.register_to_config(algorithm_type="dpmsolver++") |
|
else: |
|
raise NotImplementedError(f"{algorithm_type} does is not implemented for {self.__class__}") |
|
|
|
if solver_type not in ["midpoint", "heun"]: |
|
if solver_type in ["logrho", "bh1", "bh2"]: |
|
self.register_to_config(solver_type="midpoint") |
|
else: |
|
raise NotImplementedError(f"{solver_type} does is not implemented for {self.__class__}") |
|
|
|
|
|
self.num_inference_steps = None |
|
timesteps = np.linspace(0, num_train_timesteps - 1, num_train_timesteps, dtype=np.float32)[::-1].copy() |
|
self.timesteps = torch.from_numpy(timesteps) |
|
self.model_outputs = [None] * solver_order |
|
self.lower_order_nums = 0 |
|
self._step_index = None |
|
self.sigmas.to("cpu") |
|
|
|
@property |
|
def step_index(self): |
|
""" |
|
The index counter for current timestep. It will increae 1 after each scheduler step. |
|
""" |
|
return self._step_index |
|
|
|
def set_timesteps(self, num_inference_steps: int = None, device: Union[str, torch.device] = None): |
|
""" |
|
Sets the discrete timesteps used for the diffusion chain (to be run before inference). |
|
|
|
Args: |
|
num_inference_steps (`int`): |
|
The number of diffusion steps used when generating samples with a pre-trained model. |
|
device (`str` or `torch.device`, *optional*): |
|
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved. |
|
""" |
|
|
|
|
|
clipped_idx = torch.searchsorted(torch.flip(self.lambda_t, [0]), self.config.lambda_min_clipped) |
|
last_timestep = ((self.config.num_train_timesteps - clipped_idx).numpy()).item() |
|
|
|
|
|
if self.config.timestep_spacing == "linspace": |
|
timesteps = ( |
|
np.linspace(0, last_timestep - 1, num_inference_steps + 1).round()[::-1][:-1].copy().astype(np.int64) |
|
) |
|
elif self.config.timestep_spacing == "leading": |
|
step_ratio = last_timestep // (num_inference_steps + 1) |
|
|
|
|
|
timesteps = (np.arange(0, num_inference_steps + 1) * step_ratio).round()[::-1][:-1].copy().astype(np.int64) |
|
timesteps += self.config.steps_offset |
|
elif self.config.timestep_spacing == "trailing": |
|
step_ratio = self.config.num_train_timesteps / num_inference_steps |
|
|
|
|
|
timesteps = np.arange(last_timestep, 0, -step_ratio).round().copy().astype(np.int64) |
|
timesteps -= 1 |
|
else: |
|
raise ValueError( |
|
f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'." |
|
) |
|
|
|
sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5) |
|
log_sigmas = np.log(sigmas) |
|
|
|
if self.config.use_karras_sigmas: |
|
sigmas = np.flip(sigmas).copy() |
|
sigmas = self._convert_to_karras(in_sigmas=sigmas, num_inference_steps=num_inference_steps) |
|
timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas]).round() |
|
sigmas = np.concatenate([sigmas, sigmas[-1:]]).astype(np.float32) |
|
elif self.config.use_lu_lambdas: |
|
lambdas = np.flip(log_sigmas.copy()) |
|
lambdas = self._convert_to_lu(in_lambdas=lambdas, num_inference_steps=num_inference_steps) |
|
sigmas = np.exp(lambdas) |
|
timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas]).round() |
|
sigmas = np.concatenate([sigmas, sigmas[-1:]]).astype(np.float32) |
|
else: |
|
sigmas = np.interp(timesteps, np.arange(0, len(sigmas)), sigmas) |
|
sigma_last = ((1 - self.alphas_cumprod[0]) / self.alphas_cumprod[0]) ** 0.5 |
|
sigmas = np.concatenate([sigmas, [sigma_last]]).astype(np.float32) |
|
|
|
self.sigmas = torch.from_numpy(sigmas) |
|
self.timesteps = torch.from_numpy(timesteps).to(device=device, dtype=torch.int64) |
|
|
|
self.num_inference_steps = len(timesteps) |
|
|
|
self.model_outputs = [ |
|
None, |
|
] * self.config.solver_order |
|
self.lower_order_nums = 0 |
|
|
|
|
|
self._step_index = None |
|
self.sigmas.to("cpu") |
|
|
|
|
|
def _threshold_sample(self, sample: torch.FloatTensor) -> torch.FloatTensor: |
|
""" |
|
"Dynamic thresholding: At each sampling step we set s to a certain percentile absolute pixel value in xt0 (the |
|
prediction of x_0 at timestep t), and if s > 1, then we threshold xt0 to the range [-s, s] and then divide by |
|
s. Dynamic thresholding pushes saturated pixels (those near -1 and 1) inwards, thereby actively preventing |
|
pixels from saturation at each step. We find that dynamic thresholding results in significantly better |
|
photorealism as well as better image-text alignment, especially when using very large guidance weights." |
|
|
|
https://arxiv.org/abs/2205.11487 |
|
""" |
|
dtype = sample.dtype |
|
batch_size, channels, *remaining_dims = sample.shape |
|
|
|
if dtype not in (torch.float32, torch.float64): |
|
sample = sample.float() |
|
|
|
|
|
sample = sample.reshape(batch_size, channels * np.prod(remaining_dims)) |
|
|
|
abs_sample = sample.abs() |
|
|
|
s = torch.quantile(abs_sample, self.config.dynamic_thresholding_ratio, dim=1) |
|
s = torch.clamp( |
|
s, min=1, max=self.config.sample_max_value |
|
) |
|
s = s.unsqueeze(1) |
|
sample = torch.clamp(sample, -s, s) / s |
|
|
|
sample = sample.reshape(batch_size, channels, *remaining_dims) |
|
sample = sample.to(dtype) |
|
|
|
return sample |
|
|
|
|
|
def _sigma_to_t(self, sigma, log_sigmas): |
|
|
|
log_sigma = np.log(np.maximum(sigma, 1e-10)) |
|
|
|
|
|
dists = log_sigma - log_sigmas[:, np.newaxis] |
|
|
|
|
|
low_idx = np.cumsum((dists >= 0), axis=0).argmax(axis=0).clip(max=log_sigmas.shape[0] - 2) |
|
high_idx = low_idx + 1 |
|
|
|
low = log_sigmas[low_idx] |
|
high = log_sigmas[high_idx] |
|
|
|
|
|
w = (low - log_sigma) / (low - high) |
|
w = np.clip(w, 0, 1) |
|
|
|
|
|
t = (1 - w) * low_idx + w * high_idx |
|
t = t.reshape(sigma.shape) |
|
return t |
|
|
|
def _sigma_to_alpha_sigma_t(self, sigma): |
|
alpha_t = 1 / ((sigma**2 + 1) ** 0.5) |
|
sigma_t = sigma * alpha_t |
|
|
|
return alpha_t, sigma_t |
|
|
|
|
|
def _convert_to_karras(self, in_sigmas: torch.FloatTensor, num_inference_steps) -> torch.FloatTensor: |
|
"""Constructs the noise schedule of Karras et al. (2022).""" |
|
|
|
|
|
|
|
if hasattr(self.config, "sigma_min"): |
|
sigma_min = self.config.sigma_min |
|
else: |
|
sigma_min = None |
|
|
|
if hasattr(self.config, "sigma_max"): |
|
sigma_max = self.config.sigma_max |
|
else: |
|
sigma_max = None |
|
|
|
sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item() |
|
sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item() |
|
|
|
rho = 7.0 |
|
ramp = np.linspace(0, 1, num_inference_steps) |
|
min_inv_rho = sigma_min ** (1 / rho) |
|
max_inv_rho = sigma_max ** (1 / rho) |
|
sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho |
|
return sigmas |
|
|
|
def _convert_to_lu(self, in_lambdas: torch.FloatTensor, num_inference_steps) -> torch.FloatTensor: |
|
"""Constructs the noise schedule of Lu et al. (2022).""" |
|
|
|
lambda_min: float = in_lambdas[-1].item() |
|
lambda_max: float = in_lambdas[0].item() |
|
|
|
rho = 1.0 |
|
ramp = np.linspace(0, 1, num_inference_steps) |
|
min_inv_rho = lambda_min ** (1 / rho) |
|
max_inv_rho = lambda_max ** (1 / rho) |
|
lambdas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho |
|
return lambdas |
|
|
|
def convert_model_output( |
|
self, |
|
model_output: torch.FloatTensor, |
|
*args, |
|
sample: torch.FloatTensor = None, |
|
**kwargs, |
|
) -> torch.FloatTensor: |
|
""" |
|
Convert the model output to the corresponding type the DPMSolver/DPMSolver++ algorithm needs. DPM-Solver is |
|
designed to discretize an integral of the noise prediction model, and DPM-Solver++ is designed to discretize an |
|
integral of the data prediction model. |
|
|
|
<Tip> |
|
|
|
The algorithm and model type are decoupled. You can use either DPMSolver or DPMSolver++ for both noise |
|
prediction and data prediction models. |
|
|
|
</Tip> |
|
|
|
Args: |
|
model_output (`torch.FloatTensor`): |
|
The direct output from the learned diffusion model. |
|
sample (`torch.FloatTensor`): |
|
A current instance of a sample created by the diffusion process. |
|
|
|
Returns: |
|
`torch.FloatTensor`: |
|
The converted model output. |
|
""" |
|
timestep = args[0] if len(args) > 0 else kwargs.pop("timestep", None) |
|
if sample is None: |
|
if len(args) > 1: |
|
sample = args[1] |
|
else: |
|
raise ValueError("missing `sample` as a required keyward argument") |
|
if timestep is not None: |
|
deprecate( |
|
"timesteps", |
|
"1.0.0", |
|
"Passing `timesteps` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`", |
|
) |
|
|
|
|
|
if self.config.algorithm_type in ["dpmsolver++", "sde-dpmsolver++"]: |
|
if self.config.prediction_type == "epsilon": |
|
|
|
if self.config.variance_type in ["learned", "learned_range"]: |
|
model_output = model_output[:, :3] |
|
sigma = self.sigmas[self.step_index] |
|
alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma) |
|
x0_pred = (sample - sigma_t * model_output) / alpha_t |
|
elif self.config.prediction_type == "sample": |
|
x0_pred = model_output |
|
elif self.config.prediction_type == "v_prediction": |
|
sigma = self.sigmas[self.step_index] |
|
alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma) |
|
x0_pred = alpha_t * sample - sigma_t * model_output |
|
else: |
|
raise ValueError( |
|
f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or" |
|
" `v_prediction` for the DPMSolverMultistepScheduler." |
|
) |
|
|
|
if self.config.thresholding: |
|
x0_pred = self._threshold_sample(x0_pred) |
|
|
|
return x0_pred |
|
|
|
|
|
elif self.config.algorithm_type in ["dpmsolver", "sde-dpmsolver"]: |
|
if self.config.prediction_type == "epsilon": |
|
|
|
if self.config.variance_type in ["learned", "learned_range"]: |
|
epsilon = model_output[:, :3] |
|
else: |
|
epsilon = model_output |
|
elif self.config.prediction_type == "sample": |
|
sigma = self.sigmas[self.step_index] |
|
alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma) |
|
epsilon = (sample - alpha_t * model_output) / sigma_t |
|
elif self.config.prediction_type == "v_prediction": |
|
sigma = self.sigmas[self.step_index] |
|
alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma) |
|
epsilon = alpha_t * model_output + sigma_t * sample |
|
else: |
|
raise ValueError( |
|
f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or" |
|
" `v_prediction` for the DPMSolverMultistepScheduler." |
|
) |
|
|
|
if self.config.thresholding: |
|
sigma = self.sigmas[self.step_index] |
|
alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma) |
|
x0_pred = (sample - sigma_t * epsilon) / alpha_t |
|
x0_pred = self._threshold_sample(x0_pred) |
|
epsilon = (sample - alpha_t * x0_pred) / sigma_t |
|
|
|
return epsilon |
|
|
|
def dpm_solver_first_order_update( |
|
self, |
|
model_output: torch.FloatTensor, |
|
*args, |
|
sample: torch.FloatTensor = None, |
|
noise: Optional[torch.FloatTensor] = None, |
|
**kwargs, |
|
) -> torch.FloatTensor: |
|
""" |
|
One step for the first-order DPMSolver (equivalent to DDIM). |
|
|
|
Args: |
|
model_output (`torch.FloatTensor`): |
|
The direct output from the learned diffusion model. |
|
sample (`torch.FloatTensor`): |
|
A current instance of a sample created by the diffusion process. |
|
|
|
Returns: |
|
`torch.FloatTensor`: |
|
The sample tensor at the previous timestep. |
|
""" |
|
timestep = args[0] if len(args) > 0 else kwargs.pop("timestep", None) |
|
prev_timestep = args[1] if len(args) > 1 else kwargs.pop("prev_timestep", None) |
|
if sample is None: |
|
if len(args) > 2: |
|
sample = args[2] |
|
else: |
|
raise ValueError(" missing `sample` as a required keyward argument") |
|
if timestep is not None: |
|
deprecate( |
|
"timesteps", |
|
"1.0.0", |
|
"Passing `timesteps` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`", |
|
) |
|
|
|
if prev_timestep is not None: |
|
deprecate( |
|
"prev_timestep", |
|
"1.0.0", |
|
"Passing `prev_timestep` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`", |
|
) |
|
|
|
sigma_t, sigma_s = self.sigmas[self.step_index + 1], self.sigmas[self.step_index] |
|
alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma_t) |
|
alpha_s, sigma_s = self._sigma_to_alpha_sigma_t(sigma_s) |
|
lambda_t = torch.log(alpha_t) - torch.log(sigma_t) |
|
lambda_s = torch.log(alpha_s) - torch.log(sigma_s) |
|
|
|
h = lambda_t - lambda_s |
|
if self.config.algorithm_type == "dpmsolver++": |
|
x_t = (sigma_t / sigma_s) * sample - (alpha_t * (torch.exp(-h) - 1.0)) * model_output |
|
elif self.config.algorithm_type == "dpmsolver": |
|
x_t = (alpha_t / alpha_s) * sample - (sigma_t * (torch.exp(h) - 1.0)) * model_output |
|
elif self.config.algorithm_type == "sde-dpmsolver++": |
|
assert noise is not None |
|
x_t = ( |
|
(sigma_t / sigma_s * torch.exp(-h)) * sample |
|
+ (alpha_t * (1 - torch.exp(-2.0 * h))) * model_output |
|
+ sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h)) * noise |
|
) |
|
elif self.config.algorithm_type == "sde-dpmsolver": |
|
assert noise is not None |
|
x_t = ( |
|
(alpha_t / alpha_s) * sample |
|
- 2.0 * (sigma_t * (torch.exp(h) - 1.0)) * model_output |
|
+ sigma_t * torch.sqrt(torch.exp(2 * h) - 1.0) * noise |
|
) |
|
return x_t |
|
|
|
def multistep_dpm_solver_second_order_update( |
|
self, |
|
model_output_list: List[torch.FloatTensor], |
|
*args, |
|
sample: torch.FloatTensor = None, |
|
noise: Optional[torch.FloatTensor] = None, |
|
**kwargs, |
|
) -> torch.FloatTensor: |
|
""" |
|
One step for the second-order multistep DPMSolver. |
|
|
|
Args: |
|
model_output_list (`List[torch.FloatTensor]`): |
|
The direct outputs from learned diffusion model at current and latter timesteps. |
|
sample (`torch.FloatTensor`): |
|
A current instance of a sample created by the diffusion process. |
|
|
|
Returns: |
|
`torch.FloatTensor`: |
|
The sample tensor at the previous timestep. |
|
""" |
|
timestep_list = args[0] if len(args) > 0 else kwargs.pop("timestep_list", None) |
|
prev_timestep = args[1] if len(args) > 1 else kwargs.pop("prev_timestep", None) |
|
if sample is None: |
|
if len(args) > 2: |
|
sample = args[2] |
|
else: |
|
raise ValueError(" missing `sample` as a required keyward argument") |
|
if timestep_list is not None: |
|
deprecate( |
|
"timestep_list", |
|
"1.0.0", |
|
"Passing `timestep_list` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`", |
|
) |
|
|
|
if prev_timestep is not None: |
|
deprecate( |
|
"prev_timestep", |
|
"1.0.0", |
|
"Passing `prev_timestep` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`", |
|
) |
|
|
|
sigma_t, sigma_s0, sigma_s1 = ( |
|
self.sigmas[self.step_index + 1], |
|
self.sigmas[self.step_index], |
|
self.sigmas[self.step_index - 1], |
|
) |
|
|
|
alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma_t) |
|
alpha_s0, sigma_s0 = self._sigma_to_alpha_sigma_t(sigma_s0) |
|
alpha_s1, sigma_s1 = self._sigma_to_alpha_sigma_t(sigma_s1) |
|
|
|
lambda_t = torch.log(alpha_t) - torch.log(sigma_t) |
|
lambda_s0 = torch.log(alpha_s0) - torch.log(sigma_s0) |
|
lambda_s1 = torch.log(alpha_s1) - torch.log(sigma_s1) |
|
|
|
m0, m1 = model_output_list[-1], model_output_list[-2] |
|
|
|
h, h_0 = lambda_t - lambda_s0, lambda_s0 - lambda_s1 |
|
r0 = h_0 / h |
|
D0, D1 = m0, (1.0 / r0) * (m0 - m1) |
|
if self.config.algorithm_type == "dpmsolver++": |
|
|
|
if self.config.solver_type == "midpoint": |
|
x_t = ( |
|
(sigma_t / sigma_s0) * sample |
|
- (alpha_t * (torch.exp(-h) - 1.0)) * D0 |
|
- 0.5 * (alpha_t * (torch.exp(-h) - 1.0)) * D1 |
|
) |
|
elif self.config.solver_type == "heun": |
|
x_t = ( |
|
(sigma_t / sigma_s0) * sample |
|
- (alpha_t * (torch.exp(-h) - 1.0)) * D0 |
|
+ (alpha_t * ((torch.exp(-h) - 1.0) / h + 1.0)) * D1 |
|
) |
|
elif self.config.algorithm_type == "dpmsolver": |
|
|
|
if self.config.solver_type == "midpoint": |
|
x_t = ( |
|
(alpha_t / alpha_s0) * sample |
|
- (sigma_t * (torch.exp(h) - 1.0)) * D0 |
|
- 0.5 * (sigma_t * (torch.exp(h) - 1.0)) * D1 |
|
) |
|
elif self.config.solver_type == "heun": |
|
x_t = ( |
|
(alpha_t / alpha_s0) * sample |
|
- (sigma_t * (torch.exp(h) - 1.0)) * D0 |
|
- (sigma_t * ((torch.exp(h) - 1.0) / h - 1.0)) * D1 |
|
) |
|
elif self.config.algorithm_type == "sde-dpmsolver++": |
|
assert noise is not None |
|
if self.config.solver_type == "midpoint": |
|
x_t = ( |
|
(sigma_t / sigma_s0 * torch.exp(-h)) * sample |
|
+ (alpha_t * (1 - torch.exp(-2.0 * h))) * D0 |
|
+ 0.5 * (alpha_t * (1 - torch.exp(-2.0 * h))) * D1 |
|
+ sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h)) * noise |
|
) |
|
elif self.config.solver_type == "heun": |
|
x_t = ( |
|
(sigma_t / sigma_s0 * torch.exp(-h)) * sample |
|
+ (alpha_t * (1 - torch.exp(-2.0 * h))) * D0 |
|
+ (alpha_t * ((1.0 - torch.exp(-2.0 * h)) / (-2.0 * h) + 1.0)) * D1 |
|
+ sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h)) * noise |
|
) |
|
elif self.config.algorithm_type == "sde-dpmsolver": |
|
assert noise is not None |
|
if self.config.solver_type == "midpoint": |
|
x_t = ( |
|
(alpha_t / alpha_s0) * sample |
|
- 2.0 * (sigma_t * (torch.exp(h) - 1.0)) * D0 |
|
- (sigma_t * (torch.exp(h) - 1.0)) * D1 |
|
+ sigma_t * torch.sqrt(torch.exp(2 * h) - 1.0) * noise |
|
) |
|
elif self.config.solver_type == "heun": |
|
x_t = ( |
|
(alpha_t / alpha_s0) * sample |
|
- 2.0 * (sigma_t * (torch.exp(h) - 1.0)) * D0 |
|
- 2.0 * (sigma_t * ((torch.exp(h) - 1.0) / h - 1.0)) * D1 |
|
+ sigma_t * torch.sqrt(torch.exp(2 * h) - 1.0) * noise |
|
) |
|
return x_t |
|
|
|
def multistep_dpm_solver_third_order_update( |
|
self, |
|
model_output_list: List[torch.FloatTensor], |
|
*args, |
|
sample: torch.FloatTensor = None, |
|
**kwargs, |
|
) -> torch.FloatTensor: |
|
""" |
|
One step for the third-order multistep DPMSolver. |
|
|
|
Args: |
|
model_output_list (`List[torch.FloatTensor]`): |
|
The direct outputs from learned diffusion model at current and latter timesteps. |
|
sample (`torch.FloatTensor`): |
|
A current instance of a sample created by diffusion process. |
|
|
|
Returns: |
|
`torch.FloatTensor`: |
|
The sample tensor at the previous timestep. |
|
""" |
|
|
|
timestep_list = args[0] if len(args) > 0 else kwargs.pop("timestep_list", None) |
|
prev_timestep = args[1] if len(args) > 1 else kwargs.pop("prev_timestep", None) |
|
if sample is None: |
|
if len(args) > 2: |
|
sample = args[2] |
|
else: |
|
raise ValueError(" missing`sample` as a required keyward argument") |
|
if timestep_list is not None: |
|
deprecate( |
|
"timestep_list", |
|
"1.0.0", |
|
"Passing `timestep_list` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`", |
|
) |
|
|
|
if prev_timestep is not None: |
|
deprecate( |
|
"prev_timestep", |
|
"1.0.0", |
|
"Passing `prev_timestep` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`", |
|
) |
|
|
|
sigma_t, sigma_s0, sigma_s1, sigma_s2 = ( |
|
self.sigmas[self.step_index + 1], |
|
self.sigmas[self.step_index], |
|
self.sigmas[self.step_index - 1], |
|
self.sigmas[self.step_index - 2], |
|
) |
|
|
|
alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma_t) |
|
alpha_s0, sigma_s0 = self._sigma_to_alpha_sigma_t(sigma_s0) |
|
alpha_s1, sigma_s1 = self._sigma_to_alpha_sigma_t(sigma_s1) |
|
alpha_s2, sigma_s2 = self._sigma_to_alpha_sigma_t(sigma_s2) |
|
|
|
lambda_t = torch.log(alpha_t) - torch.log(sigma_t) |
|
lambda_s0 = torch.log(alpha_s0) - torch.log(sigma_s0) |
|
lambda_s1 = torch.log(alpha_s1) - torch.log(sigma_s1) |
|
lambda_s2 = torch.log(alpha_s2) - torch.log(sigma_s2) |
|
|
|
m0, m1, m2 = model_output_list[-1], model_output_list[-2], model_output_list[-3] |
|
|
|
h, h_0, h_1 = lambda_t - lambda_s0, lambda_s0 - lambda_s1, lambda_s1 - lambda_s2 |
|
r0, r1 = h_0 / h, h_1 / h |
|
D0 = m0 |
|
D1_0, D1_1 = (1.0 / r0) * (m0 - m1), (1.0 / r1) * (m1 - m2) |
|
D1 = D1_0 + (r0 / (r0 + r1)) * (D1_0 - D1_1) |
|
D2 = (1.0 / (r0 + r1)) * (D1_0 - D1_1) |
|
if self.config.algorithm_type == "dpmsolver++": |
|
|
|
x_t = ( |
|
(sigma_t / sigma_s0) * sample |
|
- (alpha_t * (torch.exp(-h) - 1.0)) * D0 |
|
+ (alpha_t * ((torch.exp(-h) - 1.0) / h + 1.0)) * D1 |
|
- (alpha_t * ((torch.exp(-h) - 1.0 + h) / h**2 - 0.5)) * D2 |
|
) |
|
elif self.config.algorithm_type == "dpmsolver": |
|
|
|
x_t = ( |
|
(alpha_t / alpha_s0) * sample |
|
- (sigma_t * (torch.exp(h) - 1.0)) * D0 |
|
- (sigma_t * ((torch.exp(h) - 1.0) / h - 1.0)) * D1 |
|
- (sigma_t * ((torch.exp(h) - 1.0 - h) / h**2 - 0.5)) * D2 |
|
) |
|
return x_t |
|
|
|
def _init_step_index(self, timestep): |
|
if isinstance(timestep, torch.Tensor): |
|
timestep = timestep.to(self.timesteps.device) |
|
|
|
index_candidates = (self.timesteps == timestep).nonzero() |
|
|
|
if len(index_candidates) == 0: |
|
step_index = len(self.timesteps) - 1 |
|
|
|
|
|
|
|
|
|
elif len(index_candidates) > 1: |
|
step_index = index_candidates[1].item() |
|
else: |
|
step_index = index_candidates[0].item() |
|
|
|
self._step_index = step_index |
|
|
|
def step( |
|
self, |
|
model_output: torch.FloatTensor, |
|
timestep: int, |
|
sample: torch.FloatTensor, |
|
generator=None, |
|
return_dict: bool = True, |
|
) -> Union[SchedulerOutput, Tuple]: |
|
""" |
|
Predict the sample from the previous timestep by reversing the SDE. This function propagates the sample with |
|
the multistep DPMSolver. |
|
|
|
Args: |
|
model_output (`torch.FloatTensor`): |
|
The direct output from learned diffusion model. |
|
timestep (`int`): |
|
The current discrete timestep in the diffusion chain. |
|
sample (`torch.FloatTensor`): |
|
A current instance of a sample created by the diffusion process. |
|
generator (`torch.Generator`, *optional*): |
|
A random number generator. |
|
return_dict (`bool`): |
|
Whether or not to return a [`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`. |
|
|
|
Returns: |
|
[`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`: |
|
If return_dict is `True`, [`~schedulers.scheduling_utils.SchedulerOutput`] is returned, otherwise a |
|
tuple is returned where the first element is the sample tensor. |
|
|
|
""" |
|
if self.num_inference_steps is None: |
|
raise ValueError( |
|
"Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler" |
|
) |
|
|
|
if self.step_index is None: |
|
self._init_step_index(timestep) |
|
|
|
|
|
lower_order_final = (self.step_index == len(self.timesteps) - 1) and ( |
|
self.config.euler_at_final or (self.config.lower_order_final and len(self.timesteps) < 15) |
|
) |
|
lower_order_second = ( |
|
(self.step_index == len(self.timesteps) - 2) and self.config.lower_order_final and len(self.timesteps) < 15 |
|
) |
|
|
|
model_output = self.convert_model_output(model_output, sample=sample) |
|
for i in range(self.config.solver_order - 1): |
|
self.model_outputs[i] = self.model_outputs[i + 1] |
|
self.model_outputs[-1] = model_output |
|
|
|
if self.config.algorithm_type in ["sde-dpmsolver", "sde-dpmsolver++"]: |
|
noise = randn_tensor( |
|
model_output.shape, generator=generator, device=model_output.device, dtype=model_output.dtype |
|
) |
|
else: |
|
noise = None |
|
|
|
if self.config.solver_order == 1 or self.lower_order_nums < 1 or lower_order_final: |
|
prev_sample = self.dpm_solver_first_order_update(model_output, sample=sample, noise=noise) |
|
elif self.config.solver_order == 2 or self.lower_order_nums < 2 or lower_order_second: |
|
prev_sample = self.multistep_dpm_solver_second_order_update(self.model_outputs, sample=sample, noise=noise) |
|
else: |
|
prev_sample = self.multistep_dpm_solver_third_order_update(self.model_outputs, sample=sample) |
|
|
|
if self.lower_order_nums < self.config.solver_order: |
|
self.lower_order_nums += 1 |
|
|
|
|
|
self._step_index += 1 |
|
|
|
if not return_dict: |
|
return (prev_sample,) |
|
|
|
return SchedulerOutput(prev_sample=prev_sample) |
|
|
|
def scale_model_input(self, sample: torch.FloatTensor, *args, **kwargs) -> torch.FloatTensor: |
|
""" |
|
Ensures interchangeability with schedulers that need to scale the denoising model input depending on the |
|
current timestep. |
|
|
|
Args: |
|
sample (`torch.FloatTensor`): |
|
The input sample. |
|
|
|
Returns: |
|
`torch.FloatTensor`: |
|
A scaled input sample. |
|
""" |
|
return sample |
|
|
|
def add_noise( |
|
self, |
|
original_samples: torch.FloatTensor, |
|
noise: torch.FloatTensor, |
|
timesteps: torch.IntTensor, |
|
) -> torch.FloatTensor: |
|
|
|
sigmas = self.sigmas.to(device=original_samples.device, dtype=original_samples.dtype) |
|
if original_samples.device.type == "mps" and torch.is_floating_point(timesteps): |
|
|
|
schedule_timesteps = self.timesteps.to(original_samples.device, dtype=torch.float32) |
|
timesteps = timesteps.to(original_samples.device, dtype=torch.float32) |
|
else: |
|
schedule_timesteps = self.timesteps.to(original_samples.device) |
|
timesteps = timesteps.to(original_samples.device) |
|
|
|
step_indices = [] |
|
for timestep in timesteps: |
|
index_candidates = (schedule_timesteps == timestep).nonzero() |
|
if len(index_candidates) == 0: |
|
step_index = len(schedule_timesteps) - 1 |
|
elif len(index_candidates) > 1: |
|
step_index = index_candidates[1].item() |
|
else: |
|
step_index = index_candidates[0].item() |
|
step_indices.append(step_index) |
|
|
|
sigma = sigmas[step_indices].flatten() |
|
while len(sigma.shape) < len(original_samples.shape): |
|
sigma = sigma.unsqueeze(-1) |
|
|
|
alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma) |
|
noisy_samples = alpha_t * original_samples + sigma_t * noise |
|
return noisy_samples |
|
|
|
def __len__(self): |
|
return self.config.num_train_timesteps |
|
|