|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import math |
|
from collections import defaultdict |
|
from typing import List, Optional, Tuple, Union |
|
|
|
import numpy as np |
|
import torch |
|
import torchsde |
|
|
|
from ..configuration_utils import ConfigMixin, register_to_config |
|
from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput |
|
|
|
|
|
class BatchedBrownianTree: |
|
"""A wrapper around torchsde.BrownianTree that enables batches of entropy.""" |
|
|
|
def __init__(self, x, t0, t1, seed=None, **kwargs): |
|
t0, t1, self.sign = self.sort(t0, t1) |
|
w0 = kwargs.get("w0", torch.zeros_like(x)) |
|
if seed is None: |
|
seed = torch.randint(0, 2**63 - 1, []).item() |
|
self.batched = True |
|
try: |
|
assert len(seed) == x.shape[0] |
|
w0 = w0[0] |
|
except TypeError: |
|
seed = [seed] |
|
self.batched = False |
|
self.trees = [torchsde.BrownianTree(t0, w0, t1, entropy=s, **kwargs) for s in seed] |
|
|
|
@staticmethod |
|
def sort(a, b): |
|
return (a, b, 1) if a < b else (b, a, -1) |
|
|
|
def __call__(self, t0, t1): |
|
t0, t1, sign = self.sort(t0, t1) |
|
w = torch.stack([tree(t0, t1) for tree in self.trees]) * (self.sign * sign) |
|
return w if self.batched else w[0] |
|
|
|
|
|
class BrownianTreeNoiseSampler: |
|
"""A noise sampler backed by a torchsde.BrownianTree. |
|
|
|
Args: |
|
x (Tensor): The tensor whose shape, device and dtype to use to generate |
|
random samples. |
|
sigma_min (float): The low end of the valid interval. |
|
sigma_max (float): The high end of the valid interval. |
|
seed (int or List[int]): The random seed. If a list of seeds is |
|
supplied instead of a single integer, then the noise sampler will use one BrownianTree per batch item, each |
|
with its own seed. |
|
transform (callable): A function that maps sigma to the sampler's |
|
internal timestep. |
|
""" |
|
|
|
def __init__(self, x, sigma_min, sigma_max, seed=None, transform=lambda x: x): |
|
self.transform = transform |
|
t0, t1 = self.transform(torch.as_tensor(sigma_min)), self.transform(torch.as_tensor(sigma_max)) |
|
self.tree = BatchedBrownianTree(x, t0, t1, seed) |
|
|
|
def __call__(self, sigma, sigma_next): |
|
t0, t1 = self.transform(torch.as_tensor(sigma)), self.transform(torch.as_tensor(sigma_next)) |
|
return self.tree(t0, t1) / (t1 - t0).abs().sqrt() |
|
|
|
|
|
|
|
def betas_for_alpha_bar( |
|
num_diffusion_timesteps, |
|
max_beta=0.999, |
|
alpha_transform_type="cosine", |
|
): |
|
""" |
|
Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of |
|
(1-beta) over time from t = [0,1]. |
|
|
|
Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up |
|
to that part of the diffusion process. |
|
|
|
|
|
Args: |
|
num_diffusion_timesteps (`int`): the number of betas to produce. |
|
max_beta (`float`): the maximum beta to use; use values lower than 1 to |
|
prevent singularities. |
|
alpha_transform_type (`str`, *optional*, default to `cosine`): the type of noise schedule for alpha_bar. |
|
Choose from `cosine` or `exp` |
|
|
|
Returns: |
|
betas (`np.ndarray`): the betas used by the scheduler to step the model outputs |
|
""" |
|
if alpha_transform_type == "cosine": |
|
|
|
def alpha_bar_fn(t): |
|
return math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2 |
|
|
|
elif alpha_transform_type == "exp": |
|
|
|
def alpha_bar_fn(t): |
|
return math.exp(t * -12.0) |
|
|
|
else: |
|
raise ValueError(f"Unsupported alpha_tranform_type: {alpha_transform_type}") |
|
|
|
betas = [] |
|
for i in range(num_diffusion_timesteps): |
|
t1 = i / num_diffusion_timesteps |
|
t2 = (i + 1) / num_diffusion_timesteps |
|
betas.append(min(1 - alpha_bar_fn(t2) / alpha_bar_fn(t1), max_beta)) |
|
return torch.tensor(betas, dtype=torch.float32) |
|
|
|
|
|
class DPMSolverSDEScheduler(SchedulerMixin, ConfigMixin): |
|
""" |
|
DPMSolverSDEScheduler implements the stochastic sampler from the [Elucidating the Design Space of Diffusion-Based |
|
Generative Models](https://huggingface.co/papers/2206.00364) paper. |
|
|
|
This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic |
|
methods the library implements for all schedulers such as loading and saving. |
|
|
|
Args: |
|
num_train_timesteps (`int`, defaults to 1000): |
|
The number of diffusion steps to train the model. |
|
beta_start (`float`, defaults to 0.00085): |
|
The starting `beta` value of inference. |
|
beta_end (`float`, defaults to 0.012): |
|
The final `beta` value. |
|
beta_schedule (`str`, defaults to `"linear"`): |
|
The beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from |
|
`linear` or `scaled_linear`. |
|
trained_betas (`np.ndarray`, *optional*): |
|
Pass an array of betas directly to the constructor to bypass `beta_start` and `beta_end`. |
|
prediction_type (`str`, defaults to `epsilon`, *optional*): |
|
Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process), |
|
`sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen |
|
Video](https://imagen.research.google/video/paper.pdf) paper). |
|
use_karras_sigmas (`bool`, *optional*, defaults to `False`): |
|
Whether to use Karras sigmas for step sizes in the noise schedule during the sampling process. If `True`, |
|
the sigmas are determined according to a sequence of noise levels {σi}. |
|
noise_sampler_seed (`int`, *optional*, defaults to `None`): |
|
The random seed to use for the noise sampler. If `None`, a random seed is generated. |
|
timestep_spacing (`str`, defaults to `"linspace"`): |
|
The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and |
|
Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information. |
|
steps_offset (`int`, defaults to 0): |
|
An offset added to the inference steps. You can use a combination of `offset=1` and |
|
`set_alpha_to_one=False` to make the last step use step 0 for the previous alpha product like in Stable |
|
Diffusion. |
|
""" |
|
|
|
_compatibles = [e.name for e in KarrasDiffusionSchedulers] |
|
order = 2 |
|
|
|
@register_to_config |
|
def __init__( |
|
self, |
|
num_train_timesteps: int = 1000, |
|
beta_start: float = 0.00085, |
|
beta_end: float = 0.012, |
|
beta_schedule: str = "linear", |
|
trained_betas: Optional[Union[np.ndarray, List[float]]] = None, |
|
prediction_type: str = "epsilon", |
|
use_karras_sigmas: Optional[bool] = False, |
|
noise_sampler_seed: Optional[int] = None, |
|
timestep_spacing: str = "linspace", |
|
steps_offset: int = 0, |
|
): |
|
if trained_betas is not None: |
|
self.betas = torch.tensor(trained_betas, dtype=torch.float32) |
|
elif beta_schedule == "linear": |
|
self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32) |
|
elif beta_schedule == "scaled_linear": |
|
|
|
self.betas = torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2 |
|
elif beta_schedule == "squaredcos_cap_v2": |
|
|
|
self.betas = betas_for_alpha_bar(num_train_timesteps) |
|
else: |
|
raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}") |
|
|
|
self.alphas = 1.0 - self.betas |
|
self.alphas_cumprod = torch.cumprod(self.alphas, dim=0) |
|
|
|
|
|
self.set_timesteps(num_train_timesteps, None, num_train_timesteps) |
|
self.use_karras_sigmas = use_karras_sigmas |
|
self.noise_sampler = None |
|
self.noise_sampler_seed = noise_sampler_seed |
|
self._step_index = None |
|
self.sigmas.to("cpu") |
|
|
|
|
|
def index_for_timestep(self, timestep, schedule_timesteps=None): |
|
if schedule_timesteps is None: |
|
schedule_timesteps = self.timesteps |
|
|
|
indices = (schedule_timesteps == timestep).nonzero() |
|
|
|
|
|
|
|
|
|
|
|
if len(self._index_counter) == 0: |
|
pos = 1 if len(indices) > 1 else 0 |
|
else: |
|
timestep_int = timestep.cpu().item() if torch.is_tensor(timestep) else timestep |
|
pos = self._index_counter[timestep_int] |
|
|
|
return indices[pos].item() |
|
|
|
|
|
def _init_step_index(self, timestep): |
|
if isinstance(timestep, torch.Tensor): |
|
timestep = timestep.to(self.timesteps.device) |
|
|
|
index_candidates = (self.timesteps == timestep).nonzero() |
|
|
|
|
|
|
|
|
|
|
|
if len(index_candidates) > 1: |
|
step_index = index_candidates[1] |
|
else: |
|
step_index = index_candidates[0] |
|
|
|
self._step_index = step_index.item() |
|
|
|
@property |
|
def init_noise_sigma(self): |
|
|
|
if self.config.timestep_spacing in ["linspace", "trailing"]: |
|
return self.sigmas.max() |
|
|
|
return (self.sigmas.max() ** 2 + 1) ** 0.5 |
|
|
|
@property |
|
def step_index(self): |
|
""" |
|
The index counter for current timestep. It will increae 1 after each scheduler step. |
|
""" |
|
return self._step_index |
|
|
|
def scale_model_input( |
|
self, |
|
sample: torch.FloatTensor, |
|
timestep: Union[float, torch.FloatTensor], |
|
) -> torch.FloatTensor: |
|
""" |
|
Ensures interchangeability with schedulers that need to scale the denoising model input depending on the |
|
current timestep. |
|
|
|
Args: |
|
sample (`torch.FloatTensor`): |
|
The input sample. |
|
timestep (`int`, *optional*): |
|
The current timestep in the diffusion chain. |
|
|
|
Returns: |
|
`torch.FloatTensor`: |
|
A scaled input sample. |
|
""" |
|
if self.step_index is None: |
|
self._init_step_index(timestep) |
|
|
|
sigma = self.sigmas[self.step_index] |
|
sigma_input = sigma if self.state_in_first_order else self.mid_point_sigma |
|
sample = sample / ((sigma_input**2 + 1) ** 0.5) |
|
return sample |
|
|
|
def set_timesteps( |
|
self, |
|
num_inference_steps: int, |
|
device: Union[str, torch.device] = None, |
|
num_train_timesteps: Optional[int] = None, |
|
): |
|
""" |
|
Sets the discrete timesteps used for the diffusion chain (to be run before inference). |
|
|
|
Args: |
|
num_inference_steps (`int`): |
|
The number of diffusion steps used when generating samples with a pre-trained model. |
|
device (`str` or `torch.device`, *optional*): |
|
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved. |
|
""" |
|
self.num_inference_steps = num_inference_steps |
|
|
|
num_train_timesteps = num_train_timesteps or self.config.num_train_timesteps |
|
|
|
|
|
if self.config.timestep_spacing == "linspace": |
|
timesteps = np.linspace(0, num_train_timesteps - 1, num_inference_steps, dtype=float)[::-1].copy() |
|
elif self.config.timestep_spacing == "leading": |
|
step_ratio = num_train_timesteps // self.num_inference_steps |
|
|
|
|
|
timesteps = (np.arange(0, num_inference_steps) * step_ratio).round()[::-1].copy().astype(float) |
|
timesteps += self.config.steps_offset |
|
elif self.config.timestep_spacing == "trailing": |
|
step_ratio = num_train_timesteps / self.num_inference_steps |
|
|
|
|
|
timesteps = (np.arange(num_train_timesteps, 0, -step_ratio)).round().copy().astype(float) |
|
timesteps -= 1 |
|
else: |
|
raise ValueError( |
|
f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'." |
|
) |
|
|
|
sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5) |
|
log_sigmas = np.log(sigmas) |
|
sigmas = np.interp(timesteps, np.arange(0, len(sigmas)), sigmas) |
|
|
|
if self.use_karras_sigmas: |
|
sigmas = self._convert_to_karras(in_sigmas=sigmas) |
|
timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas]) |
|
|
|
second_order_timesteps = self._second_order_timesteps(sigmas, log_sigmas) |
|
|
|
sigmas = np.concatenate([sigmas, [0.0]]).astype(np.float32) |
|
sigmas = torch.from_numpy(sigmas).to(device=device) |
|
self.sigmas = torch.cat([sigmas[:1], sigmas[1:-1].repeat_interleave(2), sigmas[-1:]]) |
|
|
|
timesteps = torch.from_numpy(timesteps) |
|
second_order_timesteps = torch.from_numpy(second_order_timesteps) |
|
timesteps = torch.cat([timesteps[:1], timesteps[1:].repeat_interleave(2)]) |
|
timesteps[1::2] = second_order_timesteps |
|
|
|
if str(device).startswith("mps"): |
|
|
|
self.timesteps = timesteps.to(device, dtype=torch.float32) |
|
else: |
|
self.timesteps = timesteps.to(device=device) |
|
|
|
|
|
self.sample = None |
|
self.mid_point_sigma = None |
|
|
|
self._step_index = None |
|
self.sigmas.to("cpu") |
|
self.noise_sampler = None |
|
|
|
|
|
|
|
self._index_counter = defaultdict(int) |
|
|
|
def _second_order_timesteps(self, sigmas, log_sigmas): |
|
def sigma_fn(_t): |
|
return np.exp(-_t) |
|
|
|
def t_fn(_sigma): |
|
return -np.log(_sigma) |
|
|
|
midpoint_ratio = 0.5 |
|
t = t_fn(sigmas) |
|
delta_time = np.diff(t) |
|
t_proposed = t[:-1] + delta_time * midpoint_ratio |
|
sig_proposed = sigma_fn(t_proposed) |
|
timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sig_proposed]) |
|
return timesteps |
|
|
|
|
|
def _sigma_to_t(self, sigma, log_sigmas): |
|
|
|
log_sigma = np.log(np.maximum(sigma, 1e-10)) |
|
|
|
|
|
dists = log_sigma - log_sigmas[:, np.newaxis] |
|
|
|
|
|
low_idx = np.cumsum((dists >= 0), axis=0).argmax(axis=0).clip(max=log_sigmas.shape[0] - 2) |
|
high_idx = low_idx + 1 |
|
|
|
low = log_sigmas[low_idx] |
|
high = log_sigmas[high_idx] |
|
|
|
|
|
w = (low - log_sigma) / (low - high) |
|
w = np.clip(w, 0, 1) |
|
|
|
|
|
t = (1 - w) * low_idx + w * high_idx |
|
t = t.reshape(sigma.shape) |
|
return t |
|
|
|
|
|
def _convert_to_karras(self, in_sigmas: torch.FloatTensor) -> torch.FloatTensor: |
|
"""Constructs the noise schedule of Karras et al. (2022).""" |
|
|
|
sigma_min: float = in_sigmas[-1].item() |
|
sigma_max: float = in_sigmas[0].item() |
|
|
|
rho = 7.0 |
|
ramp = np.linspace(0, 1, self.num_inference_steps) |
|
min_inv_rho = sigma_min ** (1 / rho) |
|
max_inv_rho = sigma_max ** (1 / rho) |
|
sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho |
|
return sigmas |
|
|
|
@property |
|
def state_in_first_order(self): |
|
return self.sample is None |
|
|
|
def step( |
|
self, |
|
model_output: Union[torch.FloatTensor, np.ndarray], |
|
timestep: Union[float, torch.FloatTensor], |
|
sample: Union[torch.FloatTensor, np.ndarray], |
|
return_dict: bool = True, |
|
s_noise: float = 1.0, |
|
) -> Union[SchedulerOutput, Tuple]: |
|
""" |
|
Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion |
|
process from the learned model outputs (most often the predicted noise). |
|
|
|
Args: |
|
model_output (`torch.FloatTensor` or `np.ndarray`): |
|
The direct output from learned diffusion model. |
|
timestep (`float` or `torch.FloatTensor`): |
|
The current discrete timestep in the diffusion chain. |
|
sample (`torch.FloatTensor` or `np.ndarray`): |
|
A current instance of a sample created by the diffusion process. |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`~schedulers.scheduling_utils.SchedulerOutput`] or tuple. |
|
s_noise (`float`, *optional*, defaults to 1.0): |
|
Scaling factor for noise added to the sample. |
|
|
|
Returns: |
|
[`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`: |
|
If return_dict is `True`, [`~schedulers.scheduling_utils.SchedulerOutput`] is returned, otherwise a |
|
tuple is returned where the first element is the sample tensor. |
|
""" |
|
if self.step_index is None: |
|
self._init_step_index(timestep) |
|
|
|
|
|
timestep_int = timestep.cpu().item() if torch.is_tensor(timestep) else timestep |
|
self._index_counter[timestep_int] += 1 |
|
|
|
|
|
if self.noise_sampler is None: |
|
min_sigma, max_sigma = self.sigmas[self.sigmas > 0].min(), self.sigmas.max() |
|
self.noise_sampler = BrownianTreeNoiseSampler(sample, min_sigma, max_sigma, self.noise_sampler_seed) |
|
|
|
|
|
def sigma_fn(_t: torch.FloatTensor) -> torch.FloatTensor: |
|
return _t.neg().exp() |
|
|
|
def t_fn(_sigma: torch.FloatTensor) -> torch.FloatTensor: |
|
return _sigma.log().neg() |
|
|
|
if self.state_in_first_order: |
|
sigma = self.sigmas[self.step_index] |
|
sigma_next = self.sigmas[self.step_index + 1] |
|
else: |
|
|
|
sigma = self.sigmas[self.step_index - 1] |
|
sigma_next = self.sigmas[self.step_index] |
|
|
|
|
|
midpoint_ratio = 0.5 |
|
t, t_next = t_fn(sigma), t_fn(sigma_next) |
|
delta_time = t_next - t |
|
t_proposed = t + delta_time * midpoint_ratio |
|
|
|
|
|
if self.config.prediction_type == "epsilon": |
|
sigma_input = sigma if self.state_in_first_order else sigma_fn(t_proposed) |
|
pred_original_sample = sample - sigma_input * model_output |
|
elif self.config.prediction_type == "v_prediction": |
|
sigma_input = sigma if self.state_in_first_order else sigma_fn(t_proposed) |
|
pred_original_sample = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( |
|
sample / (sigma_input**2 + 1) |
|
) |
|
elif self.config.prediction_type == "sample": |
|
raise NotImplementedError("prediction_type not implemented yet: sample") |
|
else: |
|
raise ValueError( |
|
f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`" |
|
) |
|
|
|
if sigma_next == 0: |
|
derivative = (sample - pred_original_sample) / sigma |
|
dt = sigma_next - sigma |
|
prev_sample = sample + derivative * dt |
|
else: |
|
if self.state_in_first_order: |
|
t_next = t_proposed |
|
else: |
|
sample = self.sample |
|
|
|
sigma_from = sigma_fn(t) |
|
sigma_to = sigma_fn(t_next) |
|
sigma_up = min(sigma_to, (sigma_to**2 * (sigma_from**2 - sigma_to**2) / sigma_from**2) ** 0.5) |
|
sigma_down = (sigma_to**2 - sigma_up**2) ** 0.5 |
|
ancestral_t = t_fn(sigma_down) |
|
prev_sample = (sigma_fn(ancestral_t) / sigma_fn(t)) * sample - ( |
|
t - ancestral_t |
|
).expm1() * pred_original_sample |
|
prev_sample = prev_sample + self.noise_sampler(sigma_fn(t), sigma_fn(t_next)) * s_noise * sigma_up |
|
|
|
if self.state_in_first_order: |
|
|
|
self.sample = sample |
|
self.mid_point_sigma = sigma_fn(t_next) |
|
else: |
|
|
|
self.sample = None |
|
self.mid_point_sigma = None |
|
|
|
|
|
self._step_index += 1 |
|
|
|
if not return_dict: |
|
return (prev_sample,) |
|
|
|
return SchedulerOutput(prev_sample=prev_sample) |
|
|
|
|
|
def add_noise( |
|
self, |
|
original_samples: torch.FloatTensor, |
|
noise: torch.FloatTensor, |
|
timesteps: torch.FloatTensor, |
|
) -> torch.FloatTensor: |
|
|
|
sigmas = self.sigmas.to(device=original_samples.device, dtype=original_samples.dtype) |
|
if original_samples.device.type == "mps" and torch.is_floating_point(timesteps): |
|
|
|
schedule_timesteps = self.timesteps.to(original_samples.device, dtype=torch.float32) |
|
timesteps = timesteps.to(original_samples.device, dtype=torch.float32) |
|
else: |
|
schedule_timesteps = self.timesteps.to(original_samples.device) |
|
timesteps = timesteps.to(original_samples.device) |
|
|
|
step_indices = [self.index_for_timestep(t, schedule_timesteps) for t in timesteps] |
|
|
|
sigma = sigmas[step_indices].flatten() |
|
while len(sigma.shape) < len(original_samples.shape): |
|
sigma = sigma.unsqueeze(-1) |
|
|
|
noisy_samples = original_samples + noise * sigma |
|
return noisy_samples |
|
|
|
def __len__(self): |
|
return self.config.num_train_timesteps |
|
|