|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from dataclasses import dataclass |
|
from typing import Optional, Tuple, Union |
|
|
|
import flax |
|
import jax.numpy as jnp |
|
|
|
from ..configuration_utils import ConfigMixin, register_to_config |
|
from .scheduling_utils_flax import ( |
|
CommonSchedulerState, |
|
FlaxKarrasDiffusionSchedulers, |
|
FlaxSchedulerMixin, |
|
FlaxSchedulerOutput, |
|
broadcast_to_shape_from_left, |
|
) |
|
|
|
|
|
@flax.struct.dataclass |
|
class EulerDiscreteSchedulerState: |
|
common: CommonSchedulerState |
|
|
|
|
|
init_noise_sigma: jnp.ndarray |
|
timesteps: jnp.ndarray |
|
sigmas: jnp.ndarray |
|
num_inference_steps: Optional[int] = None |
|
|
|
@classmethod |
|
def create( |
|
cls, common: CommonSchedulerState, init_noise_sigma: jnp.ndarray, timesteps: jnp.ndarray, sigmas: jnp.ndarray |
|
): |
|
return cls(common=common, init_noise_sigma=init_noise_sigma, timesteps=timesteps, sigmas=sigmas) |
|
|
|
|
|
@dataclass |
|
class FlaxEulerDiscreteSchedulerOutput(FlaxSchedulerOutput): |
|
state: EulerDiscreteSchedulerState |
|
|
|
|
|
class FlaxEulerDiscreteScheduler(FlaxSchedulerMixin, ConfigMixin): |
|
""" |
|
Euler scheduler (Algorithm 2) from Karras et al. (2022) https://arxiv.org/abs/2206.00364. . Based on the original |
|
k-diffusion implementation by Katherine Crowson: |
|
https://github.com/crowsonkb/k-diffusion/blob/481677d114f6ea445aa009cf5bd7a9cdee909e47/k_diffusion/sampling.py#L51 |
|
|
|
|
|
[`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__` |
|
function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`. |
|
[`SchedulerMixin`] provides general loading and saving functionality via the [`SchedulerMixin.save_pretrained`] and |
|
[`~SchedulerMixin.from_pretrained`] functions. |
|
|
|
Args: |
|
num_train_timesteps (`int`): number of diffusion steps used to train the model. |
|
beta_start (`float`): the starting `beta` value of inference. |
|
beta_end (`float`): the final `beta` value. |
|
beta_schedule (`str`): |
|
the beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from |
|
`linear` or `scaled_linear`. |
|
trained_betas (`jnp.ndarray`, optional): |
|
option to pass an array of betas directly to the constructor to bypass `beta_start`, `beta_end` etc. |
|
prediction_type (`str`, default `epsilon`, optional): |
|
prediction type of the scheduler function, one of `epsilon` (predicting the noise of the diffusion |
|
process), `sample` (directly predicting the noisy sample`) or `v_prediction` (see section 2.4 |
|
https://imagen.research.google/video/paper.pdf) |
|
dtype (`jnp.dtype`, *optional*, defaults to `jnp.float32`): |
|
the `dtype` used for params and computation. |
|
""" |
|
|
|
_compatibles = [e.name for e in FlaxKarrasDiffusionSchedulers] |
|
|
|
dtype: jnp.dtype |
|
|
|
@property |
|
def has_state(self): |
|
return True |
|
|
|
@register_to_config |
|
def __init__( |
|
self, |
|
num_train_timesteps: int = 1000, |
|
beta_start: float = 0.0001, |
|
beta_end: float = 0.02, |
|
beta_schedule: str = "linear", |
|
trained_betas: Optional[jnp.ndarray] = None, |
|
prediction_type: str = "epsilon", |
|
timestep_spacing: str = "linspace", |
|
dtype: jnp.dtype = jnp.float32, |
|
): |
|
self.dtype = dtype |
|
|
|
def create_state(self, common: Optional[CommonSchedulerState] = None) -> EulerDiscreteSchedulerState: |
|
if common is None: |
|
common = CommonSchedulerState.create(self) |
|
|
|
timesteps = jnp.arange(0, self.config.num_train_timesteps).round()[::-1] |
|
sigmas = ((1 - common.alphas_cumprod) / common.alphas_cumprod) ** 0.5 |
|
sigmas = jnp.interp(timesteps, jnp.arange(0, len(sigmas)), sigmas) |
|
sigmas = jnp.concatenate([sigmas, jnp.array([0.0], dtype=self.dtype)]) |
|
|
|
|
|
if self.config.timestep_spacing in ["linspace", "trailing"]: |
|
init_noise_sigma = sigmas.max() |
|
else: |
|
init_noise_sigma = (sigmas.max() ** 2 + 1) ** 0.5 |
|
|
|
return EulerDiscreteSchedulerState.create( |
|
common=common, |
|
init_noise_sigma=init_noise_sigma, |
|
timesteps=timesteps, |
|
sigmas=sigmas, |
|
) |
|
|
|
def scale_model_input(self, state: EulerDiscreteSchedulerState, sample: jnp.ndarray, timestep: int) -> jnp.ndarray: |
|
""" |
|
Scales the denoising model input by `(sigma**2 + 1) ** 0.5` to match the Euler algorithm. |
|
|
|
Args: |
|
state (`EulerDiscreteSchedulerState`): |
|
the `FlaxEulerDiscreteScheduler` state data class instance. |
|
sample (`jnp.ndarray`): |
|
current instance of sample being created by diffusion process. |
|
timestep (`int`): |
|
current discrete timestep in the diffusion chain. |
|
|
|
Returns: |
|
`jnp.ndarray`: scaled input sample |
|
""" |
|
(step_index,) = jnp.where(state.timesteps == timestep, size=1) |
|
step_index = step_index[0] |
|
|
|
sigma = state.sigmas[step_index] |
|
sample = sample / ((sigma**2 + 1) ** 0.5) |
|
return sample |
|
|
|
def set_timesteps( |
|
self, state: EulerDiscreteSchedulerState, num_inference_steps: int, shape: Tuple = () |
|
) -> EulerDiscreteSchedulerState: |
|
""" |
|
Sets the timesteps used for the diffusion chain. Supporting function to be run before inference. |
|
|
|
Args: |
|
state (`EulerDiscreteSchedulerState`): |
|
the `FlaxEulerDiscreteScheduler` state data class instance. |
|
num_inference_steps (`int`): |
|
the number of diffusion steps used when generating samples with a pre-trained model. |
|
""" |
|
|
|
if self.config.timestep_spacing == "linspace": |
|
timesteps = jnp.linspace(self.config.num_train_timesteps - 1, 0, num_inference_steps, dtype=self.dtype) |
|
elif self.config.timestep_spacing == "leading": |
|
step_ratio = self.config.num_train_timesteps // num_inference_steps |
|
timesteps = (jnp.arange(0, num_inference_steps) * step_ratio).round()[::-1].copy().astype(float) |
|
timesteps += 1 |
|
else: |
|
raise ValueError( |
|
f"timestep_spacing must be one of ['linspace', 'leading'], got {self.config.timestep_spacing}" |
|
) |
|
|
|
sigmas = ((1 - state.common.alphas_cumprod) / state.common.alphas_cumprod) ** 0.5 |
|
sigmas = jnp.interp(timesteps, jnp.arange(0, len(sigmas)), sigmas) |
|
sigmas = jnp.concatenate([sigmas, jnp.array([0.0], dtype=self.dtype)]) |
|
|
|
|
|
if self.config.timestep_spacing in ["linspace", "trailing"]: |
|
init_noise_sigma = sigmas.max() |
|
else: |
|
init_noise_sigma = (sigmas.max() ** 2 + 1) ** 0.5 |
|
|
|
return state.replace( |
|
timesteps=timesteps, |
|
sigmas=sigmas, |
|
num_inference_steps=num_inference_steps, |
|
init_noise_sigma=init_noise_sigma, |
|
) |
|
|
|
def step( |
|
self, |
|
state: EulerDiscreteSchedulerState, |
|
model_output: jnp.ndarray, |
|
timestep: int, |
|
sample: jnp.ndarray, |
|
return_dict: bool = True, |
|
) -> Union[FlaxEulerDiscreteSchedulerOutput, Tuple]: |
|
""" |
|
Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion |
|
process from the learned model outputs (most often the predicted noise). |
|
|
|
Args: |
|
state (`EulerDiscreteSchedulerState`): |
|
the `FlaxEulerDiscreteScheduler` state data class instance. |
|
model_output (`jnp.ndarray`): direct output from learned diffusion model. |
|
timestep (`int`): current discrete timestep in the diffusion chain. |
|
sample (`jnp.ndarray`): |
|
current instance of sample being created by diffusion process. |
|
order: coefficient for multi-step inference. |
|
return_dict (`bool`): option for returning tuple rather than FlaxEulerDiscreteScheduler class |
|
|
|
Returns: |
|
[`FlaxEulerDiscreteScheduler`] or `tuple`: [`FlaxEulerDiscreteScheduler`] if `return_dict` is True, |
|
otherwise a `tuple`. When returning a tuple, the first element is the sample tensor. |
|
|
|
""" |
|
if state.num_inference_steps is None: |
|
raise ValueError( |
|
"Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler" |
|
) |
|
|
|
(step_index,) = jnp.where(state.timesteps == timestep, size=1) |
|
step_index = step_index[0] |
|
|
|
sigma = state.sigmas[step_index] |
|
|
|
|
|
if self.config.prediction_type == "epsilon": |
|
pred_original_sample = sample - sigma * model_output |
|
elif self.config.prediction_type == "v_prediction": |
|
|
|
pred_original_sample = model_output * (-sigma / (sigma**2 + 1) ** 0.5) + (sample / (sigma**2 + 1)) |
|
else: |
|
raise ValueError( |
|
f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`" |
|
) |
|
|
|
|
|
derivative = (sample - pred_original_sample) / sigma |
|
|
|
|
|
dt = state.sigmas[step_index + 1] - sigma |
|
|
|
prev_sample = sample + derivative * dt |
|
|
|
if not return_dict: |
|
return (prev_sample, state) |
|
|
|
return FlaxEulerDiscreteSchedulerOutput(prev_sample=prev_sample, state=state) |
|
|
|
def add_noise( |
|
self, |
|
state: EulerDiscreteSchedulerState, |
|
original_samples: jnp.ndarray, |
|
noise: jnp.ndarray, |
|
timesteps: jnp.ndarray, |
|
) -> jnp.ndarray: |
|
sigma = state.sigmas[timesteps].flatten() |
|
sigma = broadcast_to_shape_from_left(sigma, noise.shape) |
|
|
|
noisy_samples = original_samples + noise * sigma |
|
|
|
return noisy_samples |
|
|
|
def __len__(self): |
|
return self.config.num_train_timesteps |
|
|